
ML2R Coding Nuggets
Solving Least Squares Gradient Flows

Christian Bauckhage

Machine Learning Rhine-Ruhr

Fraunhofer IAIS

St. Augustin, Germany

Pascal Welke

Machine Learning Rhine-Ruhr

University of Bonn

Bonn, Germany

ABSTRACT
We approach least squares optimization from the point of view of

gradient flows. As a practical example, we consider a simple linear

regression problem, set up the corresponding differential equation,

and show how to solve it using SciPy.

1 INTRODUCTION
In this note, we revisit linear regression [20] and gradient flows
[3] and demonstrate how the latter can solve the former. A didactic

example of our general setting is shown in Figure 1.

The figure depicts a sample of n data points [x j ,yj]
⊺ ∈ R2 which

exhibit a linear trend. To learn a representation of these data, we

may therefore fit a linear model yj = w0 +w1 x j + ϵj where the
parametersw0 andw1 denote intercept and slope of the line to be

fitted and ϵj represents random noise. In order to estimate optimal

model parametersw∗
0
andw∗

1
, we may proceed as follows:

Introducing the 2-dimensional parameter- and feature vectors

w =
[
w0 w1

]⊺
(1)

φ j =
[
1 x j

]⊺
(2)

we can write our model in terms of an inner product yj = φ
⊺
j w +ϵj

and resort to least squares (LSQ) optimization to determine an

optimal parameter vector. The error- or loss function we consider

in this case is the residual sum of squares

E(w) =

n∑
j=1

(
φ
⊺
j w − yj

)
2

(3)

Recall that this loss can also be written as a squared Euclidean

distance. To this end, we gather the feature vectors φ j in a feature

matrix Φ ∈ R2×n and the yj in a target vector y ∈ Rn where

Φ =
[
φ1 · · · φn

]
(4)

y =
[
y1 · · · yn

]⊺
(5)

which then allows us to write

E(w) =
Φ⊺w −y

2 = w⊺ΦΦ⊺w − 2w⊺Φy +y⊺y (6)

Since E(w) is a convex function, it has a unique global minimum

and a closed form expression for the location of this minimum is

easy to come by. To see this, we consider the gradient

∇E(w) = 2ΦΦ⊺w − 2Φy (7)

x

y
data [xj , yj]

linear model

Figure 1: A set of 2D data points and a line which was fitted
via least squares regression. Intercept and slope parameters
w∗ =

[
w∗
0
w∗
1

]⊺ of this line arew∗
0
≈ 2.97 andw∗

1
≈ −0.59.

If we now writew∗
to denote the minimizer of E(w), we know

that we must have ∇E(w∗) = 0. Based on this insight, we immedi-

ately find the sought after closed form solution forw∗
, because

2ΦΦ⊺w∗ − 2Φy = 0 (8)

⇔ w∗ = [ΦΦ⊺]−1Φy (9)

For experienced data scientists, all of this is well known and may

even appear trivial. However, because of the “triviality” of (9), it is

often overlooked thatw∗
indicates the point where the gradient of

E(w) vanishes. But this is to say thatw∗
can also be determined by

means of iterative gradient descent

wk+1 = wk − η · ∇E
(
wk

)
(10)

where η > 0 is an appropriate step size. This in itself is interesting,

because it allows for numerically robust least squares solutions.

Yet, our main interest in this note is in an even lesser known

fact, namely that the iteration in (10) has a continuous analog, the

least squares flow, which allows for least squares optimization on

emerging hardware platforms.

In section 2, we derive an ordinary differential equation from the

above finite difference scheme and discuss general properties of the

LSQ flow. In section 3, we then numerically solve the resulting initial

value problem using SciPy’s integrate functionalities. Readers

who want to experiment with our code should be familiar with

NumPy and SciPy [15] and need to

import numpy as np

import numpy.linalg as la

from scipy.integrate import odeint

https://orcid.org/0000-0001-6615-2128
https://orcid.org/0000-0002-2123-3781
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Vector_field#gradient_flow
https://en.wikipedia.org/wiki/Linear_model
https://en.wikipedia.org/wiki/Least_squares

C. Bauckhage and P. Welke

2 THEORY
This section explains what it means to say that the gradient descent

scheme (10) has a continuous analog. That is, we show that (10) is

but a finite difference approximation of a vector-valued ordinary

differential equation.

To begin with, we note that ∇E
(
wk

)
= 2ΦΦ⊺wk − 2Φy is the

error gradient at the current iterate of the descent procedure in

(10). Hence, if we plug this expression into (10) and rearrange the

resulting equation, we find

wk+1 −wk
η

= 2Φy − 2ΦΦ⊺wk (11)

Given this expression, we next introduce a new parameter t = k η
so that t +η = k η+η = (k + 1)η. If we then assume thatw(t) = wk ,

we havew(t + η) = wk+1 and can rewrite equation (11) as

w(t + η) −w(t)

η
= 2Φy − 2ΦΦ⊺w(t) (12)

At this point, it is obvious where we are headed, because, in the

limit η → 0, the expression in (12) becomes

d
dtw(t) = 2Φy − 2ΦΦ⊺w(t) (13)

= 2Φ
[
y − Φ⊺w(t)

]
(14)

This is indeed an ordinary differential equation or a continuous

time dynamical system and we can think of the gradient descent

scheme in (10) as the forward Euler method for solving it.

The dynamical system in (13), (14) has several interesting or

important characteristics. Most notably, we have

Lemma 2.1. The dynamical system in (13), (14) is a gradient flow.

Proof. In order to unpack this claim, we recall the notion of

a gradient flow: Given a vector space V and a smooth function

f : V→ R, a gradient flow is a smooth curve x : R→ V, t 7→ x(t)

such that
d
dt x(t) = −∇f

(
x(t)

)
.

To prove our claim, we must therefore find a function f
(
w(t)

)
such that

d
dtw(t) = −∇f

(
w(t)

)
(15)

But we already know that such a function exists. It simply is the

least squares error

E
(
w(t)

)
=
Φ⊺w(t) −y

2
(16)

we considered in the previous section. □

Now that we know that the system in (13), (14) is a gradient flow,

we next consider its convergence behavior. Here, we note

Lemma 2.2. The LSQ flow has a unique equilibrium point.

Proof. Recall that, in order for a pointw∗
to be an equilibrium

point of the differential equation

d
dtw(t) = −∇E

(
w(t)

)
(17)

we must have −∇E
(
w∗(t)

)
= 0 for all t . Again, we already know

that such a point exists, namely

w∗ = [ΦΦ⊺]−1Φy (18)

We also already know that this point is unique, because E
(
w(t)

)
is

convex. □

2.97
−0.59

w0

w1

Figure 2: Visualization of the least squares gradient flow for
the linear regression problem posed by the data in Fig. 1.

We furthermore have the following two lemmas whose proofs

can be found in the appendix.

Lemma 2.3. The equilibrium point of the LSQ flow is asymptoti-
cally stable.

Lemma 2.4. For any initial value w(0), the LSQ flow converges
exponentially fast to its equilibrium point.

In conclusion, all this means that, irrespective of where it starts,

the flow in (13), (14) is guaranteed to quickly settle to the solution

of the least squares optimization problem

w∗ = argmin

w

Φ⊺w −y
2

(19)

For our introductory example where w ∈ R2, we can actually

visualize this behavior. Figure 2 shows the flow field of the least

squares flow with Φ and y as in (4) and (5). The flow lines indi-

cate how pointsw in this two-dimensional parameter space move

under the dynamics in (13), (14). The green dot marks the point

[2.97,−0.59]⊺ which (rounded to two decimal places) corresponds

to the solution of the least squares regression problem in Fig. 1.

All the flow lines in Fig. 2 do indeed converge to this point. Once

they reach it, they never leave it which is to say that the point is

an asymptotically stable equilibrium of the flow.

Note: Before we conclude our theoretical discussion, we should
point out that none of the arguments we brought forth depended

on the dimensionality of the particular problem we considered.

In other words, while we based our discussion on the particular,

two-dimensional parameter estimation problem that was set up

in the introduction, everything we said applies to (much) higher-

dimensional least squares problems as well.

https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Vector_field#gradient_flow
https://en.wikipedia.org/wiki/Vector_field

Solving Least Squares Gradient Flows

3 PRACTICAL COMPUTATION
Having discussed theoretical properties of LSQ flows, the obvious

question is, if we could actually use them to solve least squares

optimization problems? Yes, we can! And we next show how to

accomplish this with SciPy.
Without loss of generality, we consider the uni-variate linear

regression problem from the introduction where we are given given

data points [x j ,yj]
⊺
and want to regress the x j onto the yj .

Hence, we first of all assume the given x j and yj have been

gathered in two vectors x ,y ∈ Rn which we represent in in terms

of one-dimensional NumPy arrays

vecX = np.array([...])

vecY = np.array([...])

(For those who want to work with a specific example, we provide

the data from Fig. 1 in Listing 1.) Given vectorx , we can compute the

feature matrix Φ in (4). To this end, we may use NumPy functions

such as these

matF = np.vstack ((np.ones_like(vecX), vecX))

As a ground truth result, we first compute the least squares

solution in (9). Recalling our discussion in [2], we may use

vecWopt = la.lstsq(matF.T, vecY , rcond=None)[0]

print ('w0 =',vecWopt [0])

print ('w1 =',vecWopt [1])

which yields

>>> w0 = 2.9731819627593143

>>> w1 = -0.5929611518969758

These are indeed the parameters of the yellow line plotted in Fig. 1

In what follows, we will work with the expression in (14) which,

once again reads

d
dtw(t) = 2Φ

[
y − Φ⊺w(t)

]
(20)

Scrutinizing this expression, we realize that solving this LSQ flow

means to compute

w(t) =

∫ t

0

2Φ
[
y − Φ⊺w(τ)

]
dτ (21)

which begs the question of how to solve the integral on the right?

The strategy we adhere to in the following is to use numerical

integration. To this end, we will resort to function odeint which is

available in SciPy’s integrate module.
1

Listing 2 shows a function integrateLSQFlow which illustrates

the use of odeint for our purpose. It is called with five parameters

vecW0, matF, vecY, tmax, and nsteps.
Parameter vecW0 is a 1D array representing a vectorw(0) that

indicates (an arbitrary choice of) the initial value of the LSQ flow at

time t = 0. Parameter matF again represents the feature matrix Φ
and vecY the corresponding target vector y; the roles of the other
two parameters will become clear shortly.

1NOTE: odeint is now considered a legacy function and users of the latest versions of

SciPy are encouraged to work with solve_ivp instead. This function, too, is found in

the integrate module. However, its API has undergone some changes over the past

couple of SciPy releases so that discussing its use would entail the risk that readers

working with slightly older SciPy versions could not run our code. Hence, we stick

with “good old” odeint.

Listing 1: data (x j ,yj) used in Fig. 1
print (vecX)
[3.52663187 5.26826326 0.16147591 2.48587331 -0.96982989

5.83416256 0.78903847 0.55833354 1.52348867 1.7466569
2.48806918 -0.65600672 -0.05321209 4.93386817 4.41435732
5.97179385 1.27788725 -0.54061263 3.79093283 4.22726313
3.29603093 4.82117652 4.52661869 1.82588778 5.5941991]

print (vecY)
[0.73982087 -0.17451263 2.95659681 1.49251154 3.76861084
-0.24208398 2.55615381 2.51249452 1.94519087 1.71712361
1.74627798 3.4169818 3.08288685 0.09202541 0.30491949

-0.74382731 2.15664118 3.25568333 0.78319727 0.68466866
0.96123544 -0.01571908 0.16697727 1.65817162 -0.12739275]

Listing 2: numerically integrating, i.e. solving, the LSQ flow
1 def integrateLSQFlow(vecW0 , matF , vecY , tmax =1.0, nsteps =501):
2

3 def derivative(vecW , t, matF , vecY):
4 return 2 * matF @ (vecY - matF.T @ vecW)
5

6 steps = np.linspace(0, tmax , nsteps)
7 matW = odeint(derivative , vecW0 , steps , (matF , vecY))
8

9 return matW

At the beginning of integrateLSQFlow (in lines 3 and 4), we

define a function derivative which implements the differential

equation in (14).

When using odeint to numerically integrate such a differential

equation, we must specify (a sequence of) time points at which to

solve the equation. Line 6 initializes a corresponding array steps.
Here, the initial time point is 0, the last one is tmax, and the number

of steps in between is given by nsteps. These are the two additional
parameters passed to integrateLSQFlow whose default values are

1.0 and 501. However, in general, users may have to choose the

values of these parameters with respect to the problem at hand.

Line 7 then invokes odeint to solve the LSQ flow. Of the many

parameters of odeint, the following ones are most important for

our current setting:

• the 1st required parameter is a callable object, i.e. a function

that computes the differential equation we wish to solve;

here we set it to derivative; note that parameter t of func-

tion derivative does not occur in the function’s body but

odeint requires it to be present; also note that the order

in which parameters vecW and t occur in the definition of

derivative is another requirement of odeint
• the 2nd required parameter represents the initial condition

of the system to be solved; hence, we pass array vecW0
• the 3rd mandatory parameter represents the time points at

which to solve the differential equation under consideration;

here, we therefore pass the array steps
• args is an optional parameter that is only required if the

function passed in the first argument has additional parame-

ters (other than vecW and t); in our case it has, namely matF
and vecY and so we pass them in a tuple

Used in this fashion, odeint produces a NumPy array of nsteps
rows which we store in matW and return from integrateLSQFlow.

Hence, given matF and vecY as defined above and assuming that

m, n = matF.shape, we may use

C. Bauckhage and P. Welke

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

0.0

+1.0

+2.0

+3.0
w0(t)

w1(t)

Figure 3: Visualization of a least squares gradient flow for
the linear regression problem in Fig. 1. Starting at w(0) = 0,
the figure shows how the componentsw0(t) andw1(t) ofw(t)
evolve over time. Confirming theoretical expectations, the
flow quickly reaches a stable point.

vecW0 = np.zeros(m)

matW = integrateLSQFlow(vecW0 , matF , vecY)

to obtain an array whose rows represent the states of the LSQ flow

at the nsteps time points between 0 and tmax. If tmax is large

enough, the last row matW[-1] of array matW represents a vector
w(tmax) that corresponds to a stable equilibrium of the flow. For

instance, for our practical problem / data in Fig. 1, we find

print ('w0 =',matW[-1,0])

print ('w1 =',matW[-1,1])

>>> w0 = 2.9731819300499662

>>> w1 = -0.5929611442824372

This almost perfectly agrees with our ground truth result obtained

from using la.lstsq. The minute differences between the two

results (they only differ after the seventh decimal place) can be

attributed to numerical imprecision. All in all, our example therefore

confirms the theoretical expectation that the LSQ flow converges

to the solution of the least squares regression problem.

4 CONCLUSION
In this note, we called attention to the (well known) fact that least

squares problems can be solved via gradient descent. More cru-

cially, we then saw that such gradient descent procedures can be

understood as discretized versions of continuous gradient flows.

While this is an interesting result that allows for deeper insights

into the behavior of (robust) least squares methods [1], one may

wonder if it provides immediate practical benefits? At this point in

time, the answer is a resounding NO, BUT . . .

While we saw that numerical integration can solve LSQ flows,

the required numerical methods are rather demanding and usually

cannot compete with high performance linear algebra routines for

least squares computation. In this sense, dynamical systems for

least squares optimization are of limited use when working with

conventional computers.

However, we are currently witnessing the (re)emergence of next

generation computing devices which transcend certain limitations

of digital computers. Indeed, analog computers (as well as special

purpose VLSI circuits) can solve differential equations [8, 16]. Since

there have been interesting developments in this area [6, 9, 12,

18], the LSQ flow may become of practical vlaue. There has also

been progress in quantum computing and quantum computers, too,

can solve differential equations [4, 11, 13]. As they promise up to

exponential speed up over classical computers, this, too, may lead

to practical use cases for the LSQ flow.

In short, since least squares optimization plays a fundamental

role in data analysis, pattern recofnition, and machine learning

(here are but a few works by ML2R researchers which illustrate this

[5, 7, 10, 14, 17, 19]), and since the LSQ flow allows for computing

solutions in amanner that suites next generation computing devices,

it may soon play a bigger role than hitherto.

A APPENDIX
In the following, we provide the proofs of Lemma 2.3 and 2.4. For

convenience, we will switch from the Leibniz notation to Newton’s

notation for temporal derivatives and write the LSQ flow in (13) as

Ûw(t) = 2Φy − 2ΦΦ⊺w(t) (22)

Having recalled common notational conventions, we can proceed

and provide the

Proof of Lemma 2.3. To show that the equilibrium pointw∗
of

the LSQ flow is asymptotically stable, we first rewrite the differential

equation in (22) in a more “standard form”. To this end, we define

A ≡ −2ΦΦ⊺ (23)

b ≡ 2Φy (24)

and write

Ûw(t) = Aw(t) + b (25)

Next, we recall that an equilibrium point of this equation is stable,

if an only if all the eigenvalues of matrixA have negative real parts.

To see that this is indeed the case, we observe that

ΦΦ⊺ =
n∑
j=1

φ j φ
⊺
j (26)

is an auto-correlation matrix. It is thus symmetric

[
ΦΦ⊺

]⊺
= ΦΦ⊺

and positive definite, because, for any x , 0, we have

x⊺ΦΦ⊺x =
n∑
j=1

x⊺φ j φ
⊺
j x =

n∑
j=1

(
x⊺φ j

)
2

> 0 (27)

Since ΦΦ⊺ is symmetric and positive definite, all its eigenvalues

are real and positive. SinceA = −2ΦΦ⊺ , all its eigenvalues are real
and negative. □

Having shown the equilibrium point of the LSQ flow to be stable,

we next prove that the flow converges exponentially fast to this

equilibrium regardless of the initial value of the system.

Proof of Lemma 2.4. Again, we consider equation in (22) in a

more “standard form”, i.e. we define

A ≡ −2ΦΦ⊺ (28)

b ≡ 2Φy (29)

and write

Ûw(t) = Aw(t) + b (30)

Solving Least Squares Gradient Flows

We already know that this system has an equilibrium pointw∗
for

which Ûw∗(t) = Aw∗(t) + b = 0. But this is to say that

w∗ = −A−1b =
[
2ΦΦ⊺

]−1
2Φy (31)

= 1

2

[
ΦΦ⊺

]−1
2Φy =

[
ΦΦ⊺

]−1
Φy (32)

which simply rephrases our result in the introduction. What is

interesting about the equation w∗ = −A−1b is that it allows for

rewriting the differential equation in (30) in homogeneous form

w.r.t. a deviation from the equilibrium, namely

Ûw(t) = Aw(t) + b (33)

= A
[
w(t) +A−1b

]
(34)

= A
[
w(t) −w∗

]
(35)

If we consider an initial value ofw(0), then the solution to this

differential equation is given by

w(t) = w∗ + eA t [w(0) −w∗
]

(36)

=
[
I − eA t]w∗ + eA tw(0) (37)

where I denotes the identity matrix and

eA t =

∞∑
k=0

1

k!
[A t]k (38)

is a matrix exponential. The validity of this solution is easily verified

by differentiating

d
dt

[
w∗ + eA t [w(0) −w∗

]]
= AeA t [w(0) −w∗

]
(39)

= A
[
w(t) −w∗

]
(40)

where the second step follows from the fact that (36) can be written

as eA t [w(0) −w∗] = w(t) −w∗
.

Finally, since A is a negative multiple of a symmetric, positive

definite matrix whose eigenvalues have strictly positive real parts,

namely A = −2ΦΦ⊺ , we have

lim

t→∞
eA t = 0 (41)

where the decay is exponential. This, in turn, establishes that

lim

t→∞
w(t) = lim

t→∞

[[
I − eA t]w∗ + eA tw(0)

]
= w∗

(42)

which is to say thatw(t) converges tow∗
regardless of whatever

initial valuew(0) we consider. □

ACKNOWLEDGMENTS
This material was produced within the Competence Center for

Machine Learning Rhine-Ruhr (ML2R) which is funded by the

Federal Ministry of Education and Research of Germany (grant no.

01IS18038C). The authors gratefully acknowledge this support.

REFERENCES
[1] A. Ali, J.Z. Kolter, and R.J. Tibshirani. 2019. A Continuous-Time View of Early

Stopping for Least Squares. In Proc. AISTATS.
[2] C. Bauckhage. 2015. NumPy / SciPy Recipes for Data Science: Ordinary Least

Squares Optimization. researchgate.net. https://dx.doi.org/10.13140/2.1.3370.

3209/1.

[3] C. Bauckhage, S. Müller, and F. Beaumont. 2021. ML2R Coding Nuggets: Solving
the Single Unit Oja Flow. Technical Report. MLAI, University of Bonn.

[4] D.W. Berry. 2014. High-order Quantum Algorithm for Solving Linear Differential

Equations. J. of Physics A: Mathematical and Theoretical 47, 10 (2014).

[5] D. Biesner, E. Brito, L.P. Hillebrand, and R. Sifa. 2020. Hybrid ensemble predictor

as quality metric for German text summarization: Fraunhofer IAIS at GermEval

2020 task 3. In Proc. SWISSTEXT / KONVENS.
[6] O. Bournez and A. Pouly. 2021. A Survey on Analog Models of Computation. In

Handbook of Computability and Complexity in Analysis, V. Brattka and P. Hertling
(Eds.). Springer. to appear.

[7] U. Brefeld, T. Gärtner, T. Scheffer, and S. Wrobel. 2006. Efficient Co-regularised

Least Squares Regression. In Proc. ICML.
[8] R.W. Brockett. 1992. Analog and Digital Computing. In Future Tendencies in

Computer Science, Control and Applied Mathematics, A. Bensoussan and J.P. Verjus
(Eds.). LNCS, Vol. 653. Springer.

[9] A. Celik, M. Stanacevic, and G. Cauwenberghs. 2005. Gradient Flow Independent

Component Analysis in Micropower VLSI. In Proc. NIPS.
[10] G.D. Evangelidis and C. Bauckhage. 2013. Efficient Subframe Video Alignment

Using Short Descriptors. IEEE Trans. Pattern Analysis and Machine Intelligence
35, 10 (2013).

[11] L. Franken, B. Georgiev, S. Muecke, M. Wolter, N. Piatkowski, and C. Bauckhage.

2020. Gradient-free Quantum Optimization on NISQ Devices. arXiv:2012.13453
[quant-ph] (2020).

[12] D. Fu, S. Shah, T. Song, and J. Reif. 2018. DNA-Based Analog Computing. In

Synthetic Biology, J. Braman (Ed.). Humana Press.

[13] B.T. Kiani, G. De Palma, D. Englund, W. Kaminsky, M. Marvian, and S. Lloyd.

2020. Quantum Advantage for Differential Equation Analysis. arXiv:2010.15776
[quant-ph] (2020).

[14] J. Kunegis, D. Fay, and C. Bauckhage. 2010. Network Growth and the Spectral

Evolution Model. In Proc. CIKM. ACM.

[15] T.E. Oliphant. 2007. Python for Scientific Computing. Computing in Science &
Engineering 9, 3 (2007).

[16] H.T. Siegelmann and S. Fishman. 1998. Analog Computation with Dynamical

Systems. Physica D 120, 1–2 (1998).

[17] R. Sifa. 2020. DESICOM as a Metaheuristic. In Proc. LION.
[18] D. Solli and B. Jalali. 2015. Analog Optical Computing. Nature Photonics 9 (2015).
[19] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch,

J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak, J. Garcke, C. Bauckhage, and

J. Schuecker. 2019. Informed Machine Learning – A Taxonomy and Survey of

Integrating Knowledge into Learning Systems. arXiv:1903.12394 [stat.ML] (2019).
[20] P. Welke and C. Bauckhage. 2020. ML2R Coding Nuggets: Linear Programming for

Robust Regression. Technical Report. MLAI, University of Bonn.

https://www.ml2r.de
https://dx.doi.org/10.13140/2.1.3370.3209/1
https://dx.doi.org/10.13140/2.1.3370.3209/1

	Abstract
	1 Introduction
	2 Theory
	3 Practical Computation
	4 Conclusion
	A Appendix
	References

