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ABSTRACT
We revisit the problem of numerically solving the Schrödinger
equation for a one-dimensional quantum harmonic oscillator. We
reconsider our previous finite difference scheme and discuss how
higher order finite differences can lead to more accurate solutions.
In particular, we will consider a five point stencil to approximate
second order derivatives and implement the approach using SciPy
functions for sparse matrices.

1 INTRODUCTION
Previously [1], we considered a simple numerical scheme for solving
the time-independent Schrödinger equation for a one-dimensional
quantum harmonic oscillator (in atomic units wherem = 1, ℏ = 1)(

−
1
2

d2

dx2
+
1
2
x2

)
Ψ(x) = Ĥ Ψ(x) = E Ψ(x) (1)

The key idea was to confine and discretize the position variable x .
We thus introduced an interval [−l/2,+l/2] of length l and a grid
of N equally spaced points −l/2 ≤ xi ≤ +l/2. This allowed us to
approximate the wave function Ψ(x) in terms of an N -dimensional
vectorψ and the Hamiltonian Ĥ in terms of an N × N matrix H so
that the Schrödinger equation became

Hψ = Eψ (2)

We then saw that it is easy to set up and solve this eigenvalue /
eigenvector problem using standard NumPy functions.

However, when we looked at the accuracy of the resulting solu-
tions, we found it to be rather good but arguably not as good as one
would wish for. In this note, we therefore revisit the approach and
discuss the idea of incorporating higher order finite differences. We
also address the following issue: If the number N of grid points is
large, dense representation of the N × N matrixH will have a very
large memory footprint. The implementation in our previous note
may thus not be practically feasible if very dense grids are to be
considered. However, since H is sparse, we can work with sparse
matrix representations and we will discuss the use of corresponding
functionalities in SciPy’s sparse module.

As always, we will first review the necessary theory (in section 2)
and then present practical implementations (in section 3).

Throughout, we assume that readers are familiar with the content
of our previous note [1]. Those who want to experiment with our
code snippets in section 3 should have experience with NumPy and
SciPy [5] and only need to

import numpy as np

import scipy.sparse as sprs

import scipy.sparse.linalg as sprsla
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2 THEORY
In [1], we saw that modeling the domain of the continuous position
variable x of a quantum harmonic oscillator in terms of a discrete
grid of N > 1 equally spaced points −l/2 ≤ xi ≤ +l/2 allows for
a finite difference approximation of the second derivative of the
wave function at the grid points. In particular, we considered

d2

dx2
Ψ(xi ) ≈

Ψ(xi−1) − 2Ψ(xi ) + Ψ(xi+1)
δx2

(3)

where δx = xi − xi−1 = 1/N−1 is a number between 0 and 1. In
what follows, we will show that

d2

dx2
Ψ(xi ) ≈

−Ψ(xi−2) + 16Ψ(xi−1) − 30Ψ(xi ) + 16Ψ(xi−1) − Ψ(xi−2)
12 δx2

(4)
gives a better approximation of the second derivative.

In order to derive this result, we will first have a closer look at
the rational behind the approximations in (3) and (4). To emphasize
that the underlying ideas are indeed general, we will work with a
general function f : R→ R.

2.1 Finite Differences and First Derivatives
To beginwith, we look at finite difference approximations of the first
derivative f ′(x) of a f (x). To this end, we consider the following
truncated Taylor series expansion

f (x + δx) ≈ f (x) + δx f ′(x) +
1
2
δx2 f ′′(x)

If we rearrange this expression, we obtain
f (x + δx) − f (x)

δx
− f ′(x) ≈ δx

f ′′(x)

2
which tells us that the so called forward difference

f (x + δx) − f (x)

δx

approximates f ′(x) but comes with an approximation error that is
proportional to the quantity δx .

To obtain a better approximation of the first derivative, we next
consider the following two expressions

f (x + δx) ≈ f (x) + δx f ′(x) +
1
2
δx2 f ′′(x) +

1
6
δx3 f ′′′(x)

f (x − δx) ≈ f (x) − δx f ′(x) +
1
2
δx2 f ′′(x) −

1
6
δx3 f ′′′(x)

If we subtract the second one from the first one and rearrange the
resulting expression, we obtain

f (x + δx) − f (x − δx)

2δx
− f ′(x) ≈ δx2

f ′′′(x)

6
which tells us that the so called central difference

f (x + δx) − f (x − δx)

2δx
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is an approximation of f ′(x) whose error is proportional to δx2.
And, since 0 < δx < 1, we have δx2 < δx which is to say that the
central difference gives a better approximation of f ′(x) than the
forward difference.

To obtain even better (centered) finite difference approximations
of f ′(x) we have to consider more terms in the Taylor expansions
as well as larger neighborhoods around x . For instance, if we work
with

f (x + 1 · δx) ≈
5∑

n=0
(+1)n δxn

f (n)(x)

n!
(5)

f (x − 1 · δx) ≈
5∑

n=0
(−1)n δxn

f (n)(x)

n!
(6)

f (x + 2 · δx) ≈
5∑

n=0
(+2)n δxn

f (n)(x)

n!
(7)

f (x − 2 · δx) ≈
5∑

n=0
(−2)n δxn

f (n)(x)

n!
(8)

we find that 8 ·
(
(5)−(6)

)
−
(
(7)−(8)

)
cancels out any terms involving

δx2 and δx3 and yields

−f (x + 2δx) + 8 f (x + 1δx) − 8 f (x − 1δx) + f (x + 2δx)
12δx

as an O
(
δx4

)
approximation to f ′(x).

2.2 Finite Differences and Second Derivatives
Approximations of higher order derivatives can be obtained in a
similar fashion. For instance, for the second derivative f ′′(x), which
is of major interest in the context of Schrödinger equations, we
may consider

f (x + 1 · δx) ≈
4∑

n=0
(+1)n δxn

f (n)(x)

n!

f (x − 1 · δx) ≈
4∑

n=0
(−1)n δxn

f (n)(x)

n!

to get

f (x + δx) − 2 f (x) + f (x − δx)

δx2
− f ′′(x) ≈ δx2

f (4)(x)

24

This tells us that the finite difference approximation we considered
in (3) actually is an O

(
δx2

)
approximation of the second derivative

of the wave function of the quantum harmonic oscillator.1

1Here is an interesting side note: In [1], we numerically solved the Schrödinger equation
in (1) on discrete grids of N1 = 1001 and N2 = 2001 points in the interval [−l/2, +l/2].
We observed that the eigenenergies we obtained from working with the larger and
thus denser grid were closer to the theoretically prescribed values. Given our present
discussion so far, this now makes mathematical sense. As δ2x = 1/2000 < δ1x = 1/1000,
we have δ2x 2 < δ1x 2 so that the finite difference approximation based on 2001 grid
points provides a more accurate approximation of the second derivative of the wave
function the the one based on 1001 grid points.

Again, we can do better. For instance, if we consider

f (x ± 1 · δx) ≈
5∑

n=0
(±1)n δxn

f (n)(x)

n!
(9)

f (x ± 2 · δx) ≈
5∑

n=0
(±2)n δxn

f (n)(x)

n!
(10)

we find that

16 f (x + 1δx) + 16 f (x − 1δx) ≈ 32 f (x) + 16δx2 f ′′(x)

and

f (x + 2δx) + f (x − 2δx) ≈ 2 f (x) + 4δx2 f ′′(x)

Subtracting the second expression from the first and rearranging
the resulting term then establishes that

−f (x + 2 δx ) + 16 f (x + 1 δx ) − 30 f (x ) + 16 f (x − 1 δx ) − f (x − 2 δx )
12 δx2

is an O
(
δx4

)
approximation to f ′′(x). In other words, the finite

difference approximation we presented in (4) actually is an O
(
δx4

)
approximation of the second derivative of the wave function of the
quantum harmonic oscillator and hence indeed more precise than
the on in (3).

2.3 Some Terminology and Context
The two approximations in (3) and (4) are given w.r.t. a regular
grid of points. The one in (3) involves three points xi−1, xi , xi+1 to
approximate the second derivative ofΨ at xi . The one in (4) involves
five points xi−2, xi−1, xi , xi+1, xi+2. Such neighborhoods around a
point xi are also called stencils. As the stencil in (3) involves three
points, its is called a three-point stencil; as the one in (4) involves
five points, its is called a five-point stencil.

There also is a connection to signal processing: The two sets of
coefficients 1/δx 2 ·

{
1,−2, 1

}
and 1/12 δx 2 ·

{
−1, 16,−30, 16,−1

}
in

(3) and (4) are sometimes called convolution kernels. Indeed, if we
define the discrete functions Ψ[i] = Ψ(x + i · δx), i ∈ Z and

д3[i] =


− 2
δx 2 if i = 0
1

δx 2 if i = ±1
0 otherwise

д5[i] =


− 30
12 δx 2 if i = 0
16

12 δx 2 if i = ±1
− 1
12 δx 2 if i = ±2
0 otherwise

we have

(3) ⇔
(
Ψ ∗ д3

)
[i] =

1∑
j=−1

Ψ[i]д3[i − j]

(4) ⇔
(
Ψ ∗ д5

)
[i] =

2∑
j=−2

Ψ[i]д5[i − j]

https://en.wikipedia.org/wiki/Stencil_(numerical_analysis)
https://en.wikipedia.org/wiki/Five-point_stencil
https://en.wikipedia.org/wiki/Five-point_stencil
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2.4 Back to Solving the Schrödinger Equation
If we use a grid of N > 1 equally spaced points −l/2 ≤ xi ≤ +l/2 to
discretize the position variable x of a quantum harmonic oscillator,
we have δx = xi − xi−1 = 1/N−1 and can discretize the Schrödinger
equation in 1.

To this end, we introduce an N -dimensional vector ψ whose
components are given by ψi = Ψ(xi ) and represent the Hilbert
space operator Ĥ = T̂ + V̂ in terms of an N × N matrix. Just as we
did in [1], we represent the potential energy operator V̂ = 1/2x2 as
a diagonal matrix

V =
1
2


x21

. . .

x2N


(11)

Contrary to [1] where we used the 3-point stencil in (3) to rep-
resent the kinetic energy operator T̂ = −d2/2dx 2 as a tridiagonal
matrix2

T3 = −
1

2 δx2



−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2


(12)

we will now use the 5-point stencil in (4) to represent T̂ in terms of
a pentadiagonal matrix

T5 = −
1

24 δx2



−30 16 −1

16 −30 16 −1

−1 16 −30 16 −1

. . .
. . .

. . .
. . .

. . .

−1 16 −30 16 −1

−1 16 −30 16

−1 16 −30



(13)

Using these definitions, the action of the Hamiltonian Ĥ of our
quantum harmonic oscillator can approximated as

Ĥ Ψ(x) ≈ Hψ (14)

where H = T5 + V . By the same token, we can approximate the
right hand side of the Schrödinger equation as

E Ψ(x) ≈ Eψ (15)

so that we once again obtain the discretized Schrödinger equation
in (2). Next, we discuss how to solve this eigenvalue / eigenvector
problem using SciPy’s sparse matrix functionalities.

3 PRACTICE
In [1], we already used NumPy to solve the discretized Schrödinger
equation in (2) for the eigenenergies and eigenstates of the quan-
tum harmonic oscillator. There, we worked with H = T3 +V and
now could use the same recipe to work with the numerically more
accurate matrix H = T5 +V .

However, our approach in [1] was wasteful because, dealing with
a grid of size N , we considered a dense representation of the N ×N

2Recall that this matrix can be understood as the Laplacian of a weighted line graph.
Since Laplacians like this occur in the context of spectral clustering [2–4, 7, 8], there
is a close connection to methods known to machine learning experts.

Listing 1: solving the discretized Schrödinger equation (2)
1 l = 12.
2 N = 1001
3 num = 11
4
5 xs = np.linspace(-l/2, +l/2, N)
6 vs = 0.5 * xs**2
7
8 dx = xs[1]-xs[0]
9
10 d0 = -30. * np.ones(N)
11 d1 = 16. * np.ones(N-1)
12 d2 = - 1. * np.ones(N-2)
13
14 matT = -sprs.diags([d0, d1, d1, d2, d2],
15 [ 0, +1, -1, +2, -2]) / (2 * 12 * dx**2)
16
17 matV = sprs.diags([vs], [0])
18
19 matH = matT + matV
20
21 es, psis = sprsla.eigsh(matH , k=num , which='SM')
22
23 psis /= np.sqrt(np.sum(psis**2, axis =0))
24
25 dens = np.abs(psis )**2

matrix H . While it is computationally easy to determine spectral
decompositions of band matrices (i.e. matrices whose non-zero ele-
ments only occur on the main diagonal and on diagonals on either
side), some computers may have difficulties storing a denseH ifN is
chosen to be large, say,N ≫ 105. Here, we therefore emphasize that
band matrices are sparse. For example, for the pentadiagonal matrix
H = T5 +V , there are only N + 2(N − 1)+ 2(N − 2) = 5N − 6 ≪ N 2

non-zero elements. This does of course suggest to implement sparse
matrix solutions.

Our recipe in Listing 1 therefore involves functions available in
the scipy.sparse module. In lines 1 and 2, we again initialize the
parameters l and N . Line 3 sets a new parameter num whose role
will be discussed soon.

Just as in [1], we then initialize two NumPy arrays xs and vs
which represent grid points xi and corresponding potential energies
V (xi ) =

1
2 x

2
i . Line 8, too, is already known from our previous

solution and sets the grid point distance δx .
The content of lines 10–12 is new. Here we initialize thrreNumPy

arrays d0, d1, and d2 which represent the main diagonal and the
±1 and ±2 diagonals of the pentadiagonal matrixT5 in (13).

To implement this matrix as a sparse matrix, we apply the SciPy
function diags. In lines 14 and 15, we cal this function with two
parameters: The first is a list of NumPy arrays containing numbers
to be put on diagonals and the second is a list of integers indicating
which diagonals are to be filled.

Method diags reoccurs in line 17 where we use it to implement
matrix V in (11) as a sparse matrix as well.

Since matT and matV now contain sparse representation of ma-
trices of commensurable sizes, we may simply add them, as we do
in line 19, to obtain a sparse representation matH of the problem
Hamiltonian H .

Once matH is available, we can compute its spectral decompo-
sition. Since matH represents a sparse matrix, we use a function
available in scipy.spase.linalg; since matH also represents a
Hermitian matrix, this function is eigsh. Line 21 demonstrates
its use: The first parameter passed to eigsh is the matrix whose
eigenvalues and eigenvectors are to be determined. The second
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Table 1: Analytical- and numerical eigenenergies of a QHO

n En (analytical) En (numerical)
3-point stencil 5-point stencil

0 0.5 0.499995 0.500000
1 1.5 1.499977 1.500000
2 2.5 2.499941 2.500000
3 3.5 3.499887 3.500000
4 4.5 4.499815 4.500000
5 5.5 5.499726 5.500000
6 6.5 6.499618 6.500000
7 7.5 7.499493 7.500001
8 8.5 8.499355 8.500008
9 9.5 9.499231 9.500045
10 10.5 10.499231 10.500227

parameter k indicates how many eigenvalues / eigenvectors are to
be computed. Here, we pass num, the parameter we initialized in
line 3. The third parameter which indicated which eigenvalues /
eigenvectors are to be determined. Here, we set it to ’SM’ which
is to say that we are interested in those eigenvalues (and their
corresponding eigenvectors) that are smallest in magnitude.

As a result, line 21 produces a 1D array es of the num small-
est eigenvalues En of H and a 2D array psis of corresponding
eigenvectorsψn . Just as in [1], we finally normalize the latter such
that ∥ψn ∥ = 1 (in line 23) and compute the respective probability
densities (in line 25).

In [1], we said that the analytical solutions of the eigenenergies
of a quantum harmonic oscillator (QHO) are En = n + 1/2 [6]. We
used this fact to asses the quality of the results we obtained from the
numerical solution based on the 3-point stencil matrix H = T3 +V .
Now, we can use the code in Listing 1 to include the results obtained
from working with the 5-point stencil matrix H = T5 +V into our
comparison.

Table 1 compares analytical and numerical results for the first
0 ≤ n ≤ 10 eigenenergies En where all numerical results were
obtained fromworking with grids ofN = 1001 points in the interval
[−l/2,+l/2] with l = 12. Looking at these numbers, we conclude
that the higher order finite difference scheme that invokes a 5-point
stencil in approximating the second derivative of the wave function
does indeed produce more accurate results than the 3-point stencil
version we considered in our last note.

4 SUMMARY AND OUTLOOK
In this note, we revisited the problem of numerically solving the
Schrödinger equation for a one-dimensional quantum harmonic
oscillator. We extended our previous recipe in two regards: First of
all, we considered amore accurate finite difference approximation of
the second derivative that features prominently in the Schrödinger
equation. Second of all, we pointed out that the discretized version
of the Hamiltonian of the system is a sparse matrix and thus applied
SciPy methods for sparse matrix computations.

In addition to the spectral decomposition methods we consid-
ered so far, there are many other numerical approaches towards
solving Schrödinger equations. Some of these will be discussed in

future notes. This will provide us with opportunities of getting to
know, say, more specialized SciPy functions for solving differential
equations.
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