ML2R Coding Nuggets
Numerically Solving the Schrodinger Equation (Part 1)

Christian Bauckhage*
Machine Learning Rhine-Ruhr
University of Bonn
Bonn, Germany

energy eigenstates ¥, (x)

probability densities |¥,,(x)|?

Figure 1: Illustration of energy eigenstates of a 1D quantum harmonic oscillator and corresponding probability densities.

ABSTRACT

Most quantum mechanical systems cannot be solved analytically
and therefore require numerical solution strategies. In this note,
we consider a simple such strategy and discretize the Schrodinger
equation that governs the behavior of a one-dimensional quantum
harmonic oscillator. This leads to an eigenvalue / eigenvector prob-
lem over finite matrices and vectors which we then implement and
solve using standard NumPy functions.

1 INTRODUCTION

The one-dimensional quantum harmonic oscillator is an important
model system in quantum mechanics. It is the quantum analog
of the classical harmonic oscillator and one of the few quantum
systems for which there existst an analytical solution [8]. However,
this note is concerned with numerical solutions to the correspond-
ing Schrodinger equation. Our goal is to use this arguably simple
setting to familiarize ourselves with fundamental approximation
techniques which will come in handy later.

Our specific approach will be to discretize the position variable
of the quantum harmonic oscillator and to compute the spectral
decomposition of the correspondingly discretized Hamiltonian of
the system. As we shall see, this can be easily accomplished using
standard NumPy methods.

*©0000-0001-6615-2128

While there already are several Web tutorials on this approach
and its implementation using NumPy, the ones we know of are not
really numpythonic. That is, they present convoluted or sloppy code
that typically involves Python for loops. Long-time readers of this
series do of course know that these are a bane when it comes to ef-
ficiency in numerical computing. Long-time readers also know that
NumPy is much richer than it appears to the novice and provides
special purpose methods that allow for writing efficient, vectorized
code. Indeed, we will demonstrate that our current setting is no
exception and allows for compact and efficient solutions.

As always, we will first review the necessary theory (in section 2)
and then present practical implementation ideas and discuss their
characteristics (in section 3).

Ideally, readers of this note should have a background in quantum
mechanics; those who don’t will have to take much of the theory
and jargon in section 2 for granted.

Readers who would like to experiment with our code snippets
in section 3 should be familiar with NumPy, SciPy, and Matplotlib
[4, 7] and only need to

import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt

https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
https://orcid.org/0000-0001-6615-2128
https://orcid.org/0000-0001-6615-2128

2 THEORY
The Hamiltonian of a one-dimensional quantum harmonic oscillator
(a particle of mass m that experiences a restoring force F = —‘Zi—‘;

that is proportional to its displacement x from an equilibrium point)
amounts to

o N 1
H=T+V=—5p*+-mw®£? (1)

Here, T and V are kinetic- and potential energy operators and the
quantities
k d
w = —_ J? =X p = —ih—
m p dx
denote the angular frequency of the oscillator, the position operator,
and the momentum operator, respectively. For simplicity, we will
henceforth consider atomic units m = 1, 4 = 1 and also let k = 1.
With these basic assumptions, the Hamiltonian in (1) becomes
L1 d 1,
H=->"_1+_-x 2
2dx? 2 @
and the time-independent Schrddinger equation H ¥(x) = E ¥(x)
which governs the behavior of the system reads

(_% % + %xz) ¥(x) = E¥(x) 3)

where ¥(x) denotes the particle’s wave function.

2.1 The Analytical Solution

Solutions (i.e. eigenvalues E, and eigenfunctions ¥,(x)) to the
second order differential equation in (3) are known to be given by

! 2
¥ (x) = W “Hp(x)-e 4
En=n+2)

2
where Hp(x) denotes the physicist’s Hermite polynomial of order n
andn=0,1,2,...

2.2 A Numerical Solution Scheme

For our numerical solution of the Schrodinger equation in (3), we
assume that the movement of the quantum particle is confined to a
one-dimensional interval [—/2, +1/2] of length [. On this interval,
we consider a grid of N equally spaced points

—é <x; < +é 6)
such that the distance between any pair of neighboring grid points
amounts to

Ox = N=1 7)

This discretization of the domain of the continuous position
variable x allows us to represent the continuous wave function
¥(x) in terms of an N-dimensional vector

P(x1) 121
¥ (x2) 12

1/} = (8)

v

C. Bauckhage

Next, we discretize the second order derivative operator that
features prominently in (3). To this end, we note that our domain
discretization allows us to approximate first order derivatives of
the wave function ¥ at grid points x; in terms of finite differences,
namely

W(xi—1) = ¥(x;)
ox

Applying this idea again allows us to discreteize the second order
derivative as follows

d
T Ylxi) ~ ©)

&2 Wlri-)=P(xi) _ ¥lx)—¥(xiv1)

-) A ox ox
Tz Y~ 3 (10)

_ Wlxim1) = 2¥0xi) + Wxirn)
Sx2
In other words, if we express (11) in terms of entries ¢/; of the vector
¢ defined in (8), we now have the following approximation
L & Vi + 2y~ Yin

L W(xi) ~
2 dx? (xi) 2 6x2

Using (12), we can therefore represent the continuous kinetic
energy operator T in terms of a tridiagonal matrix of size N X N

(11)

(12)

2 -1
-1 2 -1
R -1 2 -1)
T 26x2 E
-1 2 -1
-1 2
and obtain the following approximation
e = 2Ly~ (14)
xX)= ———— x) ~
2 dx? v

Similarly, we can approximate the continuous potential energy
operator V as a diagonal N X N matrix

X
— 1 .
V= . 2 (15)
XN
and thus obtain
VW(x) = %xz W)~ Vg (16)

Putting all these considerations together, a discretized version of
the Hamiltonian H of the quantum harmonic oscillator becomes

H=T+V (17)

and we note that this N X N matrix H is symmetric because it is a
sum of two symmetric matrices,

Last but not least, a discretized version of the Schrédinger equa-
tion in (3) can now be written in terms of finitely sized matrices
and vectors, namely

Hy=Ey (18)

which we recognize as a simple eigenvalue / eigenvector problem.

https://en.wikipedia.org/wiki/Hartree_atomic_units
https://en.wikipedia.org/wiki/Hermite_polynomials

Numerically Solving the Schrédinger Equation (Part 1)

Listing 1: solving the discretized Schrédinger equation (18)

1
N

12.
1001

xs = np.linspace(-1/2, +1/2, n)
Vs = 0.5 % xs**x2

dx = xs[1]-xs[e]

matV = np.diag(vs)

matT = 2 % np.diag(np.ones(N)) \
- np.diag(np.ones(N-1), +1) \
- np.diag(np.ones(N-1), -1)

matT /= (2 * dx*x2)

matH = matT + matV

es, psis = la.eigh(matH)

psis /= np.sqrt(np.sum(psis**2,

axis=0))

dens = np.abs(psis)**2

3 PRACTICE

In this section, we discuss how to implement the above ideas in
NumPy. A look at Listing 1 suggests that this is actually straight-
forward. To better appreciate the rationale behind the individual
steps of this piece of code, we will discuss it line by line.

To begin with, we need to set the length [of the interval to
be considered and the number N of grid points we want to place
within this interval. For example, when computing the results in
Fig. 1, we used [= 12 and N = 1001 just as in lines 1 and 2.

To represent the grid points x; and the corresponding potential
energies V(x;) = % xiz, we use two NumPy arrays xs and vs and
initialize them as shown in lines 4 and 5.

Given the array xs containing equally spaced grid points, the
grid point distance dx can be computed as in line 7.

Given array vs, matrix V can easily be implemented using the
NumPy function diag (see line 9).

To implement matrix T, we proceed as in lines 11-14. This in-
volves the NumPy function ones and once again the function diag.
At this point, we note that diag comes with two parameters v and
k where v is an array of values to be set on a diagonal of a matrix
and k is an integer (..., -1, 0, +1, ...) indicating which diagonal is to
be set. The default (k=0) is to consider the main diagonal, positive
or negative choices of k indicate sub-diagonals above or below the
main diagonal. In other words, those who know NumPy well do
not need any for loops to implement an array matH that represents
the Hamiltonian H of a quantum harmonic oscillator (see line 16).

Once matH is available, we can compute its spectral decompo-
sition. Since matH represent a symmetric or Hermitian matrix, we
apply function eigh in NumPy’s 1inalg module (line 18)." This
provides us with a 1D array es of eigenvalues E, of H and a 2D
array psis of eigenvectors g, of H.

For downstream processing, it is good practice to normalize the
latter such that ||y || = 1. This happens in line 20.

Finally, line 22 turns the array psis representing wave functions
¥(x) into an array dens representing probability densities |¥(x)|?.

!For an in-depth explanation as to why this is recommended practice, we refer to our
earlier discussion in [1].

Table 1: Analytical- and numerical eigenenergies of a QHO

n Ep analytical E,, numerical

N =1001 N = 2001
0 0.5 0.499995 0.499999
1 1.5 1.499977 1.499994
2 2.5 2.499941 2.499985
3 3.5 3.499887 3.499972
4 4.5 4.499815 4.499954
5 5.5 5.499726 5.499931
6 6.5 6.499618 6.499905
7 7.5 7.499493 7.499874
8 8.5 8.499355 8.499845
9 9.5 9.499231 9.499844
10 10.5 10.499231 10.499988

A simple Matplotlib recipe for plotting, say, the first 11 columns
of the array of densities is

num = 11

plt.figure(figsize=(10,10))

for i, n in enumerate(reversed(range(num))):
plt.subplot(num, 1, i+1)
plt.plot(xs, dens[:,n])
plt.axis('off")

plt.show()

Running this little script will produce a plot similar to the one in
Fig. 1(b), albeit not quite as appealing.

To produce the result in Fig. 1, we computed arrays psis and
dens just as shown in Listing 1 and plotted their first 11 columns in
a fanciful manner. Readers with a background in quantum mechan-
ics will recognize from Fig. 1 that our numerical solutions of the
quantum harmonic oscillator appears to be convincing. But how
good are they really?

A simple quality check consists in comparing our numerically
obtained eigenvalues E, to the analytically prescribed ones. Table 1
presents such a comparison. Its second column shows eigenvalues
computed according to equation (5); its third column shows eigen-
values we obtained from running the code in Listing 1. Looking at
these numbers, it seems that our rather simple (and rather coarse)
numerical scheme yields fairly accurate results.

However, the fourth column of Tab. 1 suggests that even better
results are possible, if we increase the number of grid points. To
produce this column, we worked with N = 2001 grid points but
otherwise proceeded as in Listing 1. Alas, the resulting gain is
minor (improvements in the fourth decimal place) and comes at
a hefty price. To obtain the numbers in the third column, we had
to spectrally decompose a matrix with 10012 entries, to obtain the
numbers in the fourth column, we had to work with a matrix about
4 times as big, namely with 20012 entries. If we were to continue to
double the resolution of our grid, matrix sizes would continue to
grow by a factor of four but accuracy improvements would be just
minuscule. Since this is not sustainable, we will discuss further and
much better numerical schemes in later notes.

4 SUMMARY AND OUTLOOK

In this note, we discussed how to numerically determine eigen-
states and eigenenergies of a one-dimensional quantum harmonic
oscillator. The simple key idea was to discretize the domain of the
position variable into a finite grid of equally spaced points and to
use finite differences over this grid to obtain a discretized version
of the Hamiltonian of the system. Approximated in terms of this
discrete Hamiltonian, the Schrédinger equation for the quantum
harmonic oscillator became an equation involving matrices and vec-
tors of finite sizes and the corresponding eigenvalue / eigenvector
problem could be solved using standard NumPy methods.

While the numerical scheme we discussed in this note is rather
coarse and does not scale well to grids of higher resolution, it should
ring a bell for people who have a background in machine learning.
This is because matrix H in (17) can be recognized as a weighted
graph Laplcacian (the graph from which it is computed is a line
graph of N vertices).

Graph Laplcians play an important role in data mining, network
analysis, or computer vision [2, 3, 5, 6, 9, 10] and their spectral
decomposition yields valuable insights into the nature of problem
under consideration. In a certain sense, the content of this note
is thus not far removed from topics familiar to machine learning
practitioners.

This is good to know because we will use connections like this
in upcoming notes in order to build bridges between the seemingly
unrelated areas of machine learning and quantum computing.

C. Bauckhage

ACKNOWLEDGMENTS

This material was produced within the Competence Center for
Machine Learning Rhine-Ruhr (ML2R) which is funded by the
Federal Ministry of Education and Research of Germany (grant no.
01IS18038C). The authors gratefully acknowledge this support.

REFERENCES

[1] C. Bauckhage. 2015. NumPy / SciPy Recipes for Data Science: Eigenvalues /
Eigenvectors of Covariance Matrices. researchgate.net. https://dx.doi.org/10.
13140/RG.2.1.2307.5046.
C. Bauckhage, R. Sifa, A. Drachen, C. Thurau, and F. Hadiji. 2014. Beyond
Heatmaps: Spatio-Temporal Clustering using Behavior-Based Partitioning of
Game Levels. In Proc. Conf. on Computational Intelligence and Games. IEEE.
[3] LS. Dhillon, Y. Guan, and B. Kulis. 2004. Kernel k-means, Spectral Clustering and
Normalized Cuts. In Proc. KDD. ACM.
[4] J.D.Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in Science
& Engineering 9, 3 (2007).
[5] J. Kunegis, D. Fay, and C. Bauckhage. 2010. Network Growth and the Spectral
Evolution Model. In Proc. CIKM. ACM.
[6] J. Kunegis, D. Fay, and C. Bauckhage. 2013. Spectral Evolution in Dynamic
Networks. Knowledge and Information Systems 37, 1 (2013).
[7] T.E. Oliphant. 2007. Python for Scientific Computing. Computing in Science &
Engineering 9, 3 (2007).
[8] R.Shankar. 1994. Principles of Quantum Mechanics (2nd ed.). Springer.
[9] J. Shi and J. Malik. 2000. Normalized Cuts and Image Segmentation. IEEE Trans.
Pattern Analysis and Machine Intelligence 22, 8 (2000).
[10] U.von Luxburg. 2007. A Tutorial on Spectral Clustering. Statistics and Computing
17 (2007).

[2

https://www.ml2r.de
https://dx.doi.org/10.13140/RG.2.1.2307.5046
https://dx.doi.org/10.13140/RG.2.1.2307.5046

	Abstract
	1 Introduction
	2 Theory
	2.1 The Analytical Solution
	2.2 A Numerical Solution Scheme

	3 Practice
	4 Summary and Outlook
	References

