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ABSTRACT
We revisit the minimum set cover problem and formulate it as
an integer linear program over binary indicator vectors. Next, we
simply adapt our earlier code for greedy set covering to indicator
vector representations.

1 INTRODUCTION
When we first looked at the set cover problem [1], we specified it
as follows: Given a setU of n elements and a set S = {S1, . . . ,Sm }
ofm subsets Si ⊆ U, find a minimum size subset C ⊆ S such that
the union of the Sj ∈ C coversU, i.e. such that⋃

Sj ∈ C

Sj = U

We then saw that this seemingly innocent problem is actually
very difficult. Indeed, its decision version (“is there a cover C of
U of size |C| = k < m ?”) is NP-complete [5]. Hence, as far as we
know today, any algorithm guaranteed to find a minimum cover
has a runtime exponential inm. Yet, we also discussed “the” greedy
algorithm for polynomial time approximations of set covering and
implemented Python code using the data types set and dict.

In this note, we consider a more abstract way of thinking about
set covering. In particular, we explain that subsets can be repre-
sented in terms of indicator vectors and that such representations
allow us to cast set covering as an integer linear program (ILP)
over binary variables.

While the ILP formulation of set cover may be less intuitive
than the specification stated above, it can lead to more efficient
implementations. Having said this, wemust make sure not to bemis-
understood: We do not claim that indicator vector representations
of set cover problems lead to polynomial rather than exponential
algorithms. In fact, binary ILPs are generally NP-complete [5].

What we claim is that the indicator vector point of view on set
covering allows for implementations with low memory footprints
irrespective of the nature of the sets at hand. (They could contain
integers just as in our example in [1] but they could also contain,
say, memory intensive high resolution photographs. For the former,
our Python code in [1] may be acceptable; for the latter it is not.)
Moreover, the ILP we derive below can be turned into a QUBO
and thus be solved using Hopfield nets or (adiabatic) quantum
computers [2].

However, realizations of this last idea will be left to later. Here,
we simply adapt the greedy algorithm for polynomial time approx-
imations of set covering to indicator vector representations. Our
respective code involves NumPy array objects [6] and requires to

import numpy as np

2 FORMULATING SET COVER AS AN ILP
To segue into the general topic of this section, we will base our
discussion on a specific example. Let us therefore replicate the
simple set cover problem in [1], albeit in a more general manner.

Recall that our example in [1] involved a setU of n = 10 integers
and that S containedm = 6 subsets of these integers. Now, instead
of forcing the elements of our set and subsets to be integers, we
allow them to be any kind of objects and therefore use indexed
variables x1, x2, . . . , x10 to refer to them.

Assuming this more general perspective, our exemplary setU
and the respective set S of subsets S1, . . . , S6 can be written down
in the following rather suggestive tabular manner

U =
{
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

}

S =



S1 =
{

x2,
}

S2 =
{
x1, x2, x3,

}
S3 =

{
x4, x5, x10

}
S4 =

{
x8, x9, x10

}
S5 =

{
x4, x5, x6, x7,

}
S6 =

{
x1, x3, x5, x7, x9,

}


Why is this a “suggestive” manner of expressing our problem?

Well, first of all, this tabular representation makes it easy to see that,
say, the union of S2, S4, and S5 coversU. It further makes it fairly
easy to see that C∗ = {S2, S4,S5} constitutes the optimal cover.

Alas, these advantagesw.r.t. visual problem solving onlymanifest
for rather small problems. Imagine we were dealing with a problem
where n = |U| andm = |S| were very large. Who would, let alone
could, visually inspect tables of millions of rows and columns?

Second of all, we therefore observe that this representation in
which subsets form rows of a table and subset elements are placed
in certain columns hints at another way of formalizing set cover
problems.

Consider this: Whenever we are given a setU = {x1, . . . ,xn }
of an arbitrary number n of arbitrary yet indexed objects x j , we
can represent any subset Si ⊆ U in terms of a binary indicator
vector

si ∈ {0, 1}n

whose entries are given by[
si
]
j =

{
1 if x j ∈ Si
0 otherwise

Note: Throughout, we write [v]k to denote the k-th entry of a
finite dimensional vectorv .

https://orcid.org/0000-0001-6615-2128
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For instance, in our running example, subsets S1 and S6 ofU
andU itself can be encoded by the following 10-dimensional binary
vectors

s1 =
[
0 1 0 0 0 0 0 0 0 0

]⊺
s6 =

[
1 0 1 0 1 0 1 0 1 0

]⊺
u =

[
1 1 1 1 1 1 1 1 1 1

]⊺
Here is another example: Subset C∗ of S can be encoded in terms

of this 6-dimensional binary vector

c∗ =
[
0 1 0 1 1 0

]⊺
Next, we observe that the idea of representing subsets in terms

of indicator vectors easily extends towards sets of subsets.
Consider this: If we are given a whole set S = {S1, . . . ,Sm }

of subsets Si ⊆ U, we can represent this collections ofm subsets of
an n element set as a binary indicator matrix S ∈ {0, 1}n×m where

S =
[
s1 s1 · · · sm

]
For instance, if we represent subsets S1, . . . ,S6 of our running

example as binary indicator vectors s1, . . . , s6, collect these in a
matrix S , and look at the transpose of this matrix, we find

S⊺ =



0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 0 0 0
1 0 1 0 1 0 1 0 1 0


Now, the obvious question is what this way of representing the

ingredients of a set cover problem buys us?
Consider this:Workingwith a binarymatrix S whosem column

vectors represent subsets of a set of n elements, the problem of
finding a cover of said set consists in finding a collection of column
vectors which, when added, produce a vector of non-zero entries.

How do we add a collection of columns of an n ×m matrix S?
By multiplying it with anm-dimensional indicator vector c whose
entries indicate which columns to add!

But this means that we can think of set covering as a linear
algebraic search problem: If we could find a vector c such that

û = S c

obeys

û ⪰ 1n

where 1n denotes the n-dimensional vector of all ones, then we
would have found a cover of the set whose subsets are represented
by the columns of matrix S .

Note, however, that the set cover problem does not simply ask
for any cover of a given set but for a minimum cover of said set.

How do we determine the size of a cover C represented in terms
of a binary indicator vector c? By adding the entries of this binary
vector! That is, by computing

|C| =

m∑
j=1

c j =
m∑
j=1

(
1 · c j

)
= 1⊺mc

where 1m denotes them-dimensional vector of all ones.

All of this is then to say that we can formulate the minimum set
cover problem in terms of the following integer linear program

c∗ = argmin
c ∈{0,1}m

1⊺mc

s.t. S c ⪰ 1n
(1)

Since we studied linear programming problems before [8, 9], we
immediately recognize (1) as an LP. What turns it into an ILP is this
crucial restriction: The vectors c over which to optimize cannot
vary continuously in Rm but must be vectors in {0, 1}m ⊂ Zm .

This restriction makes ILPs difficult to solve; indeed, they are
known to be NP-complete in general [5]. Practitioners therefore
typically work with approximation algorithms or heuristics. This is
rather easy (at least to those who can afford it) because, since large
scale ILPs arise in many industrial applications, there exist various
commercial solvers (see, for instance, [3] or [4]).

Our strategies for solving (1) will be different though. Below, we
adapt the greedy set cover algorithm to indicator vector / matrix
representations of the problem. In upcoming notes, we will then
show how to rewrite the above ILP in terms of a QUBO which can
be solved using Hopfield nets or (adiabatic) quantum computing.

3 NUMPY IMPLEMENTATIONS
Before we discuss ideas for NumPy implementations of indicator
vector versions of the greedy set cover algorithm, we will first
compare pseudo code of its set-based variant (Alg. 1) to the pseudo
code for an indicator vector-based variant (Alg. 2).

As we can see, the logic for both variants is the same but we
swapped operations on sets in Alg. 1 for operations on indicator
vectors in Alg. 2. These operations crucially exploit the fact that
we are dealing with binary vectors. For instance, we swapped the
operation Si ∩U for si ⊙ u where ⊙ is the Hadamard product,
i.e. the element-wise product of two vectors. This works, because,
for si ,u ∈ {0, 1}n , we have[

si ⊙ u
]
k =

{
1 if [si ]k = 1 ∧ [u]k = 1
0 otherwise

By the same token, we swapped the operationU\Sj foru⊙
[
1n−sj

]
and encourage our readers to verify that this is reasonable. Finally,
when working with binary indicator vectors, the set operation
C ∪

{
Sj

}
simply becomes to set [c]j to 1.

Note: If we wanted to, we could also understand our binary vec-
tors as bit-strings. In this case, we would compute si ⊙ u as si ∧u
and u ⊙

[
1n − sj

]
as u ∧ ¬sj where ∧ denotes the element-wise

conjunction of two bit strings and ¬ is the element-wise negation of
a bit string. In practice, this point of view may lead to particularly
efficient code. However, we deliberately decided to express our
pseudo code in terms of linear algebraic operations. Even though
NumPy ships with methods for computing logical operations, we
still would have to mix them with non-logical operation for count-
ing the number of 1s in a bit string.

Speaking of NumPy, let’s now practically implement the pseudo
code in Alg. 2. To assess the practical performance of our imple-
mentations, we will again apply our code to the exemplary problem
in [1]. There we implemented the setU as

U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

https://en.wikipedia.org/wiki/Integer_programming
ttps://en.wikipedia.org/wiki/Hadamard_product_(matrices)
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Algorithm 1: greedy set cover with sets

C ← ∅ // initialize C

whileU , ∅
Sj ← argmax

Si ∈S

|Si ∩U| // select Sj ∈ S covering most ofU

U ←U \ Sj // remove elements of Sj fromU

C ← C ∪
{
Sj

}
// add Sj to C

Algorithm 2: greedy set cover with binary indicator vectors

c ← 0m // initialize c

while u , 0n
j ← argmax

si ∈S
1⊺n

[
si ⊙ u

]
// select sj in S covering most of u

u ← u ⊙
[
1n − sj

]
// set [u]k to 0, if [sj ]k = 1

[c]j ← 1 // set entry j of c to 1

and realized the set of subsets S among which to find a cover C as

S = dict(enumerate ([{1},

{0, 1, 2},

{3, 4, 9},

{7, 8, 9},

{3, 4, 5, 6},

{0, 2, 4, 6, 8}], 1))

For our purposes in this note, we need to translate this set and
dictionary of sets into a binary vector and a binary matrix, respec-
tively. To this end, we may use something like function sets2vecs
in Listing 1. Indeed, if we call this function using

vecU , matS = sets2vecs(U, S)

and subsequently print matS, we obtain

[[0 1 0 0 0 1]

[1 1 0 0 0 0]

[0 1 0 0 0 1]

[0 0 1 0 1 0]

[0 0 1 0 1 1]

[0 0 0 0 1 0]

[0 0 0 0 1 1]

[0 0 0 1 0 0]

[0 0 0 1 0 1]

[0 0 1 1 0 0]]

and recognize this matrix S as an indicator matrix representing our
set of sets S.

Now that we have NumPy array representations of vector u and
matrix S which specify our set cover instance, we next implement
the pseudo code in Alg. 2. This is as easy as shown in Listing 2 where
the body of function greedySetCoverV1 is an almost verbatim
NumPy implementation of the pseudo code. However, we should
probably emphasize three points:

First, the second parameter of greedySetCoverV1 is called matSt
and represents the transpose S⊺ of our indicator matrix S ; we opt
to work with the transpose S⊺ of S because operations on array
rows are slightly more efficient than operations on array columns.
Second, in our while loop, we use the NumPy function any to test
the condition u , 0n ; np.any(vecU) evaluates to False unless all
elements of array vecU are 0. Third, applied to NumPy arrays, the
operator * behaves like the Hadamard product ⊙.

Given this simple piece of code, we now can call

vecC = greedySetCoverV1(vecU , matS.T)

Listing 1: converting sets to indicator vectors / matrices
def sets2vecs(setU , dctS):

m, n = len(dctS), len(setU)
vecU = np.ones(n). astype(np.uint8)
matS = np.zeros((n,m)). astype(np.uint8)

for i in dctS:
matS[list(dctS[i]), i-1] = 1

return vecU , matS

Listing 2: simple implementation of greedy set cover
def greedySetCoverV1(vecU , matSt):

m, n = matSt.shape
vecC = np.zeros(m). astype(np.uint8)

while np.any(vecU):
j = np.argmax(np.sum(vecU * matSt , axis =1))
vecU = vecU * (1 - matSt[j])
vecC[j] = 1

return vecC

This will produce an array vecC which represents an indicator
vector c which, in turn, represents a cover C ofU. To see that this
works, we may

print (matS[:,vecC.astype(bool )])

and obtain

[[0 0 0 0 1]

[1 0 0 0 0]

[0 0 0 0 1]

[0 1 0 1 0]

[0 1 0 1 1]

[0 0 0 1 0]

[0 0 0 1 1]

[0 0 1 0 0]

[0 0 1 0 1]

[0 1 1 0 0]]

Upon inspection, this result turns out to be an indicator matrix
representation of the collection C =

{
S1,S3,S4,S5,S6

}
which

coversU. Indeed, this is the exact same result we obtained from
our “naïve” implementation of set-based greedy set covering in [1].

There, we also discussed that this result is a bit disappointing
because, for our simple example, we actually know that the optimal,
i.e. minimum, set cover is given by C∗ =

{
S2,S4,S5

}
.
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Listing 3: improved implementation of greedy set cover
1 def greedySetCoverV2(vecU , matSt):
2 m, n = matSt.shape
3 vecC = np.zeros(m). astype(np.uint8)
4
5 cols = np.where(np.sum(matSt , axis =0) == 1)[0]
6 rows = np.where(matSt[:,cols] == 1)[0]
7 vecC[rows] = 1
8
9 vecU = vecU * (1 - np.sum(matSt[rows], axis =0) > 0)
10
11 while np.any(vecU):
12 j = np.argmax(np.sum(vecU * matSt , axis =1))
13 vecU = vecU * (1 - matSt[j])
14 vecC[j] = 1
15
16 return vecC

In order to improve the behavior of our previous “naïve” code,
we therefore considered a heuristic which initialized C to contain
all those subsets Sj ∈ S which must be part of an optimal solution
C∗ simply because they contain elements ofU that do not occur in
any other subset.

How could we implement that heuristic for our current indicator
vector based approach? As easy as in Listing 3.

Remember that, in [1], we had to compute an inverted index
to determine the corresponding Sj . However, when working with
indicator vectors and matrices, such shenanigans are superfluous.
We can simply use

cols = np.where(np.sum(matSt , axis =0) == 1)[0]

to determine which columns of array matSt contain a single 1.
Given the indices of these columns, we can then use

rows = np.where(matSt[:,cols] == 1)[0]

to determine in which rows of array matSt these single 1s occur.
These rows of matSt represent the subsetsSj which have to be part
of an optimal set cover. Hence, if array vecC has been initialized to
all 0s, we may now use

vecC[rows] = 1

to pre-select these necessary components of the solution.
In Listing 3, all of this happens in lines 5–7 and these lines cause

no harm if there aren’t any subsets with elements not occurring in
other subsets. This is because the NumPy function where in line 5
will return an empty array cols if its condition is not met. Should
this be the case, then rows in line 6 will be an empty array, too, so
that the statement in line 7 will have no effect.

Having pre-selected necessary components of an optimal set
cover solution, we next need to remove their elements from U.
Working with indicator vector / matrix representations, this is again
easy. In Listing 3, it happens in line 9 and we note that this piece
of code is very numpythonic way of realizing the mathematical
expression

u ← u ⊙
[
1n −min{1, S c}

]
where min is understood as an element-wise operation. Readers as
very much encouraged to verify that this expression really repre-
sents the removal of the elements contained in the Sj fromU.

From here on out, the code in Listing 3 is the same as in Listing 2
and thus again an almost verbatim implementation of the pseudo
code in Alg, 2.

To examine the behavior of our code enriched by the initializa-
tion heuristic, we may call

vecC = greedySetCoverV2(vecU , matS.T)

which will once again will produce a NumPy array vecC which
represents an indicator vector c which represents a cover C ofU.
Once again using

print (matS[:,vecC.astype(bool )])

we now obtain

[[1 0 0]

[1 0 0]

[1 0 0]

[0 0 1]

[0 0 1]

[0 0 1]

[0 0 1]

[0 1 0]

[0 1 0]

[0 1 0]]

This we recognize as the collection C∗ =
{
S2,S4,S5

}
which is

indeed the optimal solution to our simple, exemplary problem.
Again, we therefore find that it may be beneficial to build domain

specific prior knowledge into models or methods [7]. However, just
as we did in [1], we must emphasize that the greedy set cover
algorithm comes with provable performance guarantees and is
therefore an approximation algorithm. Our informed initialization of
this algorithm does not come with such guarantees and is therefore
but a heuristic. In other words, there may be situations where our
initialization does not improve results.

4 SUMMARY AND OUTLOOK
Revisiting the combinatorial set cover problem, we saw that we may
think about it in terms of indicator vectors and matrices and that
corresponding NumPy implementations of “the” greedy algorithm
for polynomial time approximations are straightforward.

In upcoming notes, we will revisit set covering once more and
show how to rewrite its ILP formulation in (1) as a quadratic uncon-
strained binary optimization problem (QUBO). We already learned
about QUBOs when we worked with Hopfield nets for problem
solving. It will therefore be straightforward to apply Hopfield nets
to set cover problems.
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