
ML2R Coding Nuggets
Greedy Set Cover with Native Python Data Types

Christian Bauckhage
Machine Learning Rhine-Ruhr

Fraunhofer IAIS
St. Augustin, Germany

ABSTRACT
In preparation for things to come, we discuss a plain vanilla Python
implementation of “the” greedy approximation algorithm for the
set cover problem.

1 INTRODUCTION
While most of ourML2R coding nuggets discuss (implementations
of) machine learning algorithms, this note deals with a notorious
combinatorial optimization problem and a popular approximation
algorithm for its solution. That is, we look at the set cover problem
and discuss Python implementations of “the” greedy algorithm for
polynomial time approximations of set covering.

Why would this be of interest to machine learners? Remem-
ber that we previously studied neural network training without
error backpropagation [1, 8]? Soon, we will learn about another
derivative-free trainingmethod for neural networks and thismethod
will require us to solve set cover problems.

We therefore recall that set covering is one of Karp’s original
NP-complete problems [5] and, in its simplest unweighted form, is
specified as follows:

Given a set or universeU of n elements and a set or collection
S =

{
S1,S2, . . . ,Sm

}
of m ≤ 2n subsets Si ⊆ U whose

union equals or covers U, find the smallest sub-collection
C ⊆ S whose union coversU.

Here is a simple example which illustrates what this specification
is all about: Consider a universe ofn = 10 elements, say, the integers
from zero to nine

U =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

}
(1)

Further consider a collection ofm = 6 subsets of this unviverse

S =
{
S1,S2,S3,S4,S5,S6

}
(2)

where

S1 =
{
1
}

(3)

S2 =
{
0, 1, 2

}
(4)

S3 =
{
3, 4, 9

}
(5)

S4 =
{
7, 8, 9

}
(6)

S5 =
{
3, 4, 5, 6

}
(7)

S6 =
{
0, 2, 4, 6, 8

}
(8)

Given these ingredients, we recognize a valid instance (U,S) of
the set cover problem because the subsets Si ofU in S cover the
universe. More formally, we are dealing with a setting where⋃

Si ∈ S

Si = U

Then what about sub-collections C ⊆ S? Are there any with⋃
Sj ∈ C

Sj = U

i.e. are there any sub-collections which cover the universe? Yes,
there are even 10 of them, namely

C1 =
{
S2,S4,S5

}
C2 =

{
S1,S2,S4,S5

}
C3 =

{
S1,S4,S5,S6

}
C4 =

{
S2,S3,S4,S5

}
C5 =

{
S2,S4,S5,S6

}
C6 =

{
S1,S2,S3,S4,S5

}
C7 =

{
S1,S2,S4,S5,S6

}
C8 =

{
S1,S3,S4,S5,S6

}
C9 =

{
S2,S3,S4,S5,S6

}
C10 =

{
S1,S2,S3,S4,S5,S6

}
Looking at this list, we immediately realize that sub-collection

C1 solves our problem as its size |C1 | = 3 is smaller than those of
its peers.

Well that was easy, wasn’t it? All we had to do was, first, to
determine all sub-collections C of S which coverU and, second,
to search for the smallest one among them.

Alas, while this strategy works for small problems as in our
example, it becomes infeasible once we face practically relevant
settings. Why? Well, consider this: To truly rest assured that we
will find a minimum set cover for (U,S) with |S| =m, we would
have to check all 2m possible combinations of the subsets in S.

Exhaustive or brute force searches for solutions to a set cover
problem are therefore of exponential complexity. Form = 6 as in
our example, this is still manageable because 26 = 64 are really
not that many combinations to check. However, in practice, we
typically have to deal with problems wherem is much larger. This is
problematic because, say, for a still moderate choice ofm = 1000, we
would already have to check 21000 ≈ 1.07 × 10301 sub-collections.1
There simply is no classical (super-)computer that could do this in
reasonable time.

There are, however, more efficient strategies for approximately
solving set cover problems. Some involve QUBOs which could be
solved using Hopfield nets or quantum computing [2] and will be
studied later. In this present note, we simply consider the greedy
algorithm discussed in the next section.
1Compare this to the number of atoms in the real physical universe which is reasonably
estimated to be about 1082 which is nothing compared to 10301 .

https://orcid.org/0000-0001-6615-2128
https://www.ml2r.de
https://en.wikipedia.org/wiki/Set_cover_problem

C. Bauckhage

2 THE GREEDY SET COVER ALGORITHM
Without much further ado, assuming a valid problem instance
(U,S) with |U| = n and |S| = m, here is “the” greedy algorithm
for approximative set covering

C ← ∅ // initialize C

whileU , ∅
Sj ← argmax

Si ∈S

|Si ∩U| // select Sj ∈ S covering most ofU

C ← C ∪
{
Sj

}
// add Sj to C

U ← U \ Sj // remove the elements of Sj fromU

This simple algorithm has a runtime polynomial in n and m
(details depend on the sophistication of its practical implementation
which may involve efficient data structures such as bucket queues
[3]). It is also clear that the algorithm will yield a set cover which,
alas, may not be optimal. This is indeed typical for any greedy
algorithm which, at each stage of its operation, makes the best
current choice. The crux is that a best local choice is not necessarily
a best global choice.

On the plus side, one can show that results produced by the
greedy set cover algorithm are guaranteed to be close to optimal.
That is, one can show that, if the optimal cover consists of k sets,
then the greedy algorithm will always find a cover consistsing of
at most k · lnn sets [3, 4]. In other words, the greedy set cover
algorithm is guaranteed to give an O(lnn) approximation to the
optimal solution and one can even further show that no polynomial
time algorithm can do better unless P = NP [4].

Now, polynomial runtime sounds good and logarithmic approxi-
mation does not sound too bad. However, the next section will show
that the latter can still be disappointing. In addition to a straight-
forward Python implementation of the above pseudo-code, we will
therefore also present slightly more elaborate code that can avoid
some of the obvious blunders in local decision making.

3 NATIVE PYTHON IMPLEMENTATIONS
This section presents Python implementations of the greedy set
cover algorithm which only require the Python standard library. To
get an impression for how they perform in practice, we will apply
our code to the exemplary problem specified in (1)–(8).

The first design decision we have to make is how to implement
a universe of integers. Well, Python has an inbuilt data type set
which provides methods such as union(), intersection(), or
difference(). These compute exactly what their names suggest
and also come with convenient infix operators, for instance |, &,
and - for union, intersection, and difference, respectively. All of
this simply suggests to implementU in (1) as

U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Alas, when it comes to sets of sets such as S in (2), things are not
as straightforward. Since Python considers a set to be an unordered
collection of hashable objects, the inner sets of a set of sets would
have to be of type frozenset. While this is a minor inconvenience,
a bigger drawback is that Python sets do not support indexing. We

Listing 1: simple implementation of greedy set cover
def greedySetCoverV1(U, S):

initialize C
C = {}

while U:
select Sj in S covering most of U
j, Sj = max(S.items(), key = lambda itm : len(itm[1] & U))

add Sj to C
C[j] = Sj

remove element of Sj from U
U = U - Sj

return C

therefore opt to implement sets of sets as Python dictionaries whose
keys are integers and whose values are sets. This way, S in (2) can
be represented as

S = dict(enumerate ([{1},

{0, 1, 2},

{3, 4, 9},

{7, 8, 9},

{3, 4, 5, 6},

{0, 2, 4, 6, 8}], 1))

for which we point out that our enumeration counter starts at 1.
Given these preparations, an almost verbatim implementation

of the above pseudo code is as easy as shown in Listing 1. To pretty
print results produced this code snippet, we may use, say

C = greedySetCoverV1(U, S)

for j in sorted(C):

print ('S{0} = {1}'.format(j, C[j]))

This results in

>>> S1 = {1}

>>> S3 = {9, 3, 4}

>>> S4 = {8, 9, 7}

>>> S5 = {3, 4, 5, 6}

>>> S6 = {0, 2, 4, 6, 8}

which corresponds to the sub-collection C8 =
{
S1,S3,S4,S5,S6

}
we saw in the introduction.

Thus, our result is a covering sub-collection but a bit disappoint-
ing nevertheless. This is because we already know that the optimal
set cover for our exemplary problem is C1 =

{
S2,S4,S5

}
which is

“considerably” smaller than C8.
So, is there anything we could do to get a better performance

out of the greedy algorithm? Yes, there is! We could, for example,
use a simple heuristic for a better initialization of the sub-collection
C which, so far, is simply initialized to the empty set ∅.

Let’s have another look at our example in (1)–(8) to see what we
may mean by a “better” initialization of C.

Note that elements 5, 7 ∈ U only occur in subsets S5 and S4,
respectively. Any smallest cover of our universeU must therefore
necessarily contain sets S4 and S5. But especially S4 is not large
enough to be picked in the initial stages of greedy selection and, due
to possibly unfortunate tie-breaks, may not even be selected quickly
during the latter stages. However, this issue could be circumvented
if we made use of our knowledge that the rather small set S4 has

Greedy Set Cover with Native Python Data Types

Listing 2: improved implementation of greedy set cover
1 def greedySetCoverV2(U, S):
2 # build inverted index
3 I = {x : [i for i in S if x in S[i]] for x in U}
4
5 # pre -select necessary sets Sj into C
6 C = {j : S[j] for j in [I[x][0] for x in I if len(I[x]) == 1]}
7
8 # remove elements of union of sets Sj in C from U
9 U = U - set(). union (*[C[j] for j in C])
10
11
12 while U:
13 j = max(S.keys(), key = lambda k : len(S[k] & U))
14
15 C[j] = S[j]
16
17 U = U - S[j]
18
19 return C

to be contained in C. Indeed, we could (and should) initialize C to
contain all those subsets Sj ∈ S which must be part of the solution
simply because they contain elements of U that do not occur in
any other subset.

How do we determine these Sj? By building an inverted index
known from information retrieval [6]! That is, we create a data
structure which, for every x ∈ U, registers in which of the Si ∈ S
it occurs in. Next, we may iterate over this inverted index and
determine which of the x point to only one Sj and add those Sj to
the initial sub-collection C.

In Python, the “natural” data type for realizing these ideas is again
the dictionary. It is therefore no surprise that it features prominently
in our implementation of function greedySetCoverV2 in Listing 2.

In line 3, we use a dictionary to implement an inverted index I
and, in line 6, we use I to populate the initial sub-collection C.

Now that our initial C is not empty anymore, we must not forget
to remove all elements in the union of the Sj ∈ C fromU, that is,
we have to compute

U ←U \
⋃
Sj ∈C

Sj

This happens in very pythonic manner in line 9. Once pre-selection
and cleanup are done, we can proceed with the greedy set cover
algorithm. The remaining lines of Listing 2 are therefore almost
identical to those in Listing 1. However, for the fun of it, we tweaked
them a bit. Can you spot what we did and can you explain why our
tweaked code still works? And, while we are at it, can you guess
which code is slightly more efficient, the one in Listing 1 or the one
in Listing 2?

To pretty print outcomes obtained form our more sophisticated
greedy set cover implementation, we may again use

C = greedySetCoverV2(U, S)

for j in sorted(C):

print ('S{0} = {1}'.format(j, C[j]))

which now results in
>>> S2 = {0, 1, 2}

>>> S4 = {8, 9, 7}

>>> S5 = {3, 4, 5, 6}

We recognize this as sub-collection C1 =
{
S2,S4,S5

}
from the

introduction and thus as the true optimal solution to our problem.

All in all, this goes to show that it is a good idea to incorpo-
rate domain specific prior knowledge into models or methods [7].
However, we must emphasize the following: While the greedy set
cover algorithm comes with provable performance guarantees and
is therefore an approximation algorithm, our modified, intelligent
initialization does not come with such guarantees and is therefore
a heuristic. Indeed, there may be situations where our intelligent
initialization does not improve results. In other words, there may be
situations where the additional efforts for building and traversing
an inverted index do not amortize.

4 SUMMARY AND OUTLOOK
In this note, we had our first look at the combinatorial set cover
problem and discussed straightforward Python implementations
of “the” greedy algorithm for polynomial time approximations.
Working with Python sets and dictionaries, coding was a joy! Even
our suggestions for a better initialization for greedy set cover did
not cause much overhead w.r.t. implementations efforts.

In upcoming notes, we will revisit set covering and discuss alter-
native implementations of the greedy algorithm. These will make
use of indicator vectors and thus involve the use of NumPy / SciPy.

Once we have familiarized ourselves with these ideas, we will
switch gears and see that set cover can be understood as an integer
linear programming problem as well as a quadratic unconstrained
binary optimization problem (QUBO). We encountered these before
when we studied Hopfield nets for problem solving. As we are
already familiar with Hopfield nets, it will be easy to apply them
for solving set cover problems.

Finally, we will of course get back to our promise in the intro-
duction and discuss where and how set cover problems arise in the
context of neural network training.

ACKNOWLEDGMENTS
This material was produced within the Competence Center for
Machine Learning Rhine-Ruhr (ML2R) which is funded by the
Federal Ministry of Education and Research of Germany (grant no.
01IS18038C). The authors gratefully acknowledge this support.

REFERENCES
[1] C. Bauckhage. 2018. NumPy / SciPy Recipes for Data Science: Training Neural

Networks Without Backpropagation. researchgate.net.
[2] C. Bauckhage, R. Sanchez, and R. Sifa. 2020. Problem Solving with Hopfield

Networks and Adiabatic Quantum Computing. In Proc. IJCNN. IEEE.
[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. 2001. Introduction to

Algorithms (2nd ed.). MIT Press.
[4] S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani. 2006. Algorithms. McGraw-

Hill.
[5] R.M. Karp. 1972. Reducibility among Combinatorial Problems. In Complexity

of Computer Computation, R.E. Miller, J.W. Thatcher, and J.D. Bohlinger (Eds.).
Springer.

[6] C.D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press.

[7] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch,
J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak, J. Garcke, C. Bauckhage, and
J. Schuecker. 2019. Informed Machine Learning – A Taxonomy and Survey of
Integrating Knowledge into Learning Systems. arXiv:1903.12394 [stat.ML] (2019).

[8] B. Wulff, J. Schuecker, and C. Bauckhage. 2018. SPSA for Layer-Wise Training of
Deep Networks. In Proc. ICANN.

https://www.ml2r.de

	Abstract
	1 Introduction
	2 The Greedy Set Cover Algorithm
	3 Native Python Implementations
	4 Summary and Outlook
	References

