
ML2R Coding Nuggets
SVM Training Using 16 Lines of Plain Vanilla NumPy Code

Christian Bauckhage
Machine Learning Rhine-Ruhr

University of Bonn
Bonn, Germany

Rafet Sifa
Machine Learning Rhine-Ruhr

Fraunhofer IAIS
St. Augustin, Germany

ABSTRACT
We consider L2 support vector machines for binary classification.
These are as robust as other kinds of SVMs but can be trained almost
effortlessly. Indeed, having previously derived the corresponding
dual training problem, we now show how to solve it using the
Frank-Wolfe algorithm. In short, we show that it requires only a
few lines of plain vanilla NumPy code to train an SVM.

1 INTRODUCTION
In an earlier theory nugget [5], we derived the dual problem of L2
support vector machine training. Back then, we claimed that it is
downright simple to train such an SVM and promised to show this
later. In this coding nugget, we now make good on that promise.

First, we recall the basic application scenario for (kernel) L2
SVMs and formalize the problem of training them. We then discuss
how the Frank-Wolfe algorithm [8] allows for solving this training
problem and finally implement the respective procedure in NumPy.
Our main goal is to show that the required coding effort is minimal.
In other words, this note is supposed to demonstrate that SVM
training requires only a few lines of plain vanilla NumPy code.

Our discussion will assume that readers know about the theory
behind SVMs. Those who would like to experiment with our code
should be familiar with NumPy [13] and only need to

import numpy as np

import scipy.spatial as spt

2 THEORY
To begin with, we recall the basic setting of binary classification.
Our discussion will be slightly more general than in [5], because
a more general perspective will allow us to train kernel SVMs
which can be applied to linearly separable as well as to non-linearly
separable data (see Fig. 1).

Consider a set of labeled training data
{
(x j ,yj)

}n
j=1 where the

data x j ∈ Rm were sampled from two classes Ω1 and Ω2 and the
labels

yj =

{
+1, if x j ∈ Ω1
−1, if x j ∈ Ω2,

indicate class membership. The problem of training a binary classi-
fier for such data consists in estimating the parameters of a suitable
function y : Rm → {−1,+1} that can predict correct class labels
for newly observed data x .

Ω1

Ω2

(a) linearly separable training data

Ω1

Ω2

(b) non-linearly separable training data

Figure 1: Two examples of training data x j ∈ R2 from from
two classes. On the left, the two classes are linearly separable
and can thus be dealt with using a linear classifier; in the
example on the right, they are not and cannot.

A common ansatz for the function y is to assume that it is a
linear classifier which computes

y(x) =

{
+1, if w⊺φ(x) − b ≥ 0
−1, otherwise

= sign
(
w⊺φ(x) − b

)
Here, φ : Rm → H is a transformation or feature map which maps
the input data into a (possibly infinite dimensional Hilbert) feature
space which we denote by H. The parameters of such a classifier
that need to be learned from the training data are the weight vector
w ∈ H and the bias value b ∈ R.

The problem of learning these parameters is usually formalized
as an optimization problem. Depending on the optimization crite-
rion, the resulting estimates may differ and the trained classifier will
go by different names (naïve Bayes classifier, least squares classifier,
linear discriminant classifier, support vector machine, . . .).

But the more daunting question at this point is how to estimate
a possibly infinite dimensional weight vector?

One common strategy is to devise training procedures where
feature vectors only occur in form of inner products with other
feature vectors. This way, we may invoke the kernel trick which
replaces inner products in potentially infinite dimensional spaces
by kernel function evaluations.

Among the many possible classifiers, SVMs are interesting not
the least because they naturally lend themselves to kernel methods.
Alas, SVM training involves solving a constrained optimization
problemwhich may be difficult. Then again, SVMs come in different
flavors [7, 14, 16] and we next work out that L2 SVMs [1, 9, 11] can
be trained rather easily.

https://orcid.org/0000-0001-6615-2128

C. Bauckhage and R. Sifa

2.1 Primal and Dual L2 SMV Training Problem
Recall that support vector machines for binary classification learn
the max-margin hyperplane between (transformed) training data
from two classes. Since a hyperplane is given byw⊺φ(x) − b = 0,
the idea is thus to estimate w and b such that the margin ρ ∈ R
between the plane and the nearestφ(x j) from either class is as large
as possible. Yet, if the two classes are not linearly separable, there
is no separating hyperplane. This is usually dealt with by trying to
find a plane such that the individual margins ρ − ξ j are maximized
where the ξ j are elements of a vector ξ ∈ Rn of slack variables.

Given these prerequisites, we recall that the primal problem of
training an L2 SVM consists in solving

w∗, b∗, ρ∗, ξ∗ = argmin
w , b,ρ,ξ

1
2
(
w⊺w +C · ξ ⊺ξ

)
− ρ

s.t. Ψ⊺w − b · y − ρ · 1 + ξ ⪰ 0
(1)

where C ≥ 0 ∈ R is a parameter for tuning the slack and 0, 1 ∈ Rn

denote the vectors of all zeros and ones, respectively. The vector

y =
[
y1,y2, . . . ,yn

]⊺ (2)

gathers the given training labels yj and the columns of the matrix

Ψ =
[
y1 · φ(x1),y2 · φ(x2), . . . ,yn · φ(xn)

]
(3)

contain the feature space representations of the training data x j
weighted by their respective label values yj .

We furthermore recall that the corresponding dual problem of
training an L2 SVM consists in solving

µ∗ = argmax
µ

− 1
2 µ
⊺
[
Ψ⊺Ψ +yy⊺ + 1

C I
]
µ

s.t.
1⊺µ = 1

µ ⪰ 0

(4)

Here, I denotes the n × n identity matrix and the vector

µ =
[
µ1, µ2, . . . , µn

]⊺ (5)

is a vector of Lagrange multipliers. Its optimal choice µ∗, i.e. the
solution to (4), allows for computing the optimal parameters w∗

and b∗ of the SVM we are after because we recall that

w∗ = Ψµ∗ (6)
b∗ = −y⊺µ∗ (7)

From the point of view of “pen and paper mathematics”, we could
already conclude our discussion because (6) and (7) characterize
the optimal parameters of an L2 SVM.

However, from the point of view of practical computation, we
still have work to do. First of all, we have not yet worked out how
to actually solve (4) for µ∗. Second of all, we need to address the
disquieting fact that the columns of matrix Ψ in (4) are feature
space vectors. Since these may potentially be infinite dimensional,
it is not yet clear how we could practically solve (4) or evaluate the
expression in (6). Next, we first address the latter issue and then
the former.

2.2 Invoking the Kernel Trick
Observe that the occurrence of Ψ in (4) is in form of an n×n Gram
matrix Ψ⊺Ψ whose elements amount to[

Ψ⊺Ψ
]
i j = yi · φ(xi)

⊺φ(x j) · yj (8)

Hence, if we consider a Mercer kernel k : Rm × Rm → R where

k
(
xi ,x j

)
= φ(xi)

⊺φ(x j) (9)

we can equivalently write the elements of Ψ⊺Ψ in terms of kernel
evaluations, namely[

Ψ⊺Ψ
]
i j = yi · k

(
xi ,x j

)
· yj (10)

= yi · Ki j · yj (11)
= Ki j · yi · yj (12)

Indeed, if we collect the numbers Ki j in an n × n kernel matrix K ,
we can rewrite the whole Gramian as

Ψ⊺Ψ = K ⊙ yy⊺ ≡ G (13)

where ⊙ denotes theHadamard product or element-wise product
of two matrices.

Expressed in terms of kernel evaluations, the dual problem of
training an L2 SVM thus becomes solving

µ∗ = argmax
µ

− 1
2 µ
⊺
[
G +yy⊺ + 1

C I
]
µ

s.t.
1⊺µ = 1

µ ⪰ 0

(14)

This now appears doable because computing matrix G does not
require evaluating feature space inner products. Rather, its elements
can be determined by evaluating kernel functions such as the linear
kernel or the Gaussian kernel for pairs of given training data points.

With respect to practically computing the optimal weight vector,
we observe that plugging w∗ = Ψµ∗ into the classifier function
y(x) = sign

(
w⊺φ(x) − b

)
provides us with

y(x) = sign
(
µ
⊺
∗ Ψ
⊺φ(x) − b∗

)
(15)

Looking at this expression, we further note that the elements of
the vector Ψ⊺φ(x) are given by[

Ψ⊺φ(x)
]
j = yj · φ(x j)

⊺φ(x) (16)

= yj · k
(
x j ,x

)
(17)

= yj · kj (x) (18)

If we now collect the numbers kj (x) in a kernel vector k(x), we
realize that the computations of our classifier can be written as

y(x) = sign
(
µ
⊺
∗

(
k(x) ⊙ y

)
− b∗

)
(19)

This, however, is to say that, in the application phase of the trained
classifier, it is not necessary to evaluate feature space inner products
involvingw∗. Instead, we can evaluate kernel functions for given
training data points and a new input data point.

https://en.wikipedia.org/wiki/Gram_matrix
https://en.wikipedia.org/wiki/Gram_matrix
https://en.wikipedia.org/wiki/Kernel_method
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

SVM Training Using 16 Lines of Plain Vanilla NumPy Code

Algorithm 1 General Frank-Wolfe algorithm for solving (22).
guess a feasible point

µ0 ∈ ∆n−1

for t = 0, . . . , tmax
determine the step direction

st = argmin
s ∈∆n−1

−s⊺∇D
(
µt

)
update the current estimate

µt+1 = µt +
2

t+2 ·
[
st − µt

]

2.3 Frank-Wolfe for L2 SVM Training
Finally addressing the question of how to solve the kernelized dual
problem of training an L2 SVM in (14), we note that its feasible set
is the standard simplex

∆n−1 =
{
µ ∈ Rn

�� µ ⪰ 0 ∧ 1⊺µ = 1
}

(20)

We further note that its objective function

D
(
µ
)
= − 1

2 µ
⊺
[
G +yy⊺ + 1

C I
]
µ (21)

is quadratic and concave (due to the scaling factor of −1/2). But this
is to say that maximizing D

(
µ
)
is the same as minimizing −D

(
µ
)
.

We can therefore rewrite our training problem as

µ∗ = argmin
µ∈∆n−1

−D
(
µ
)

(22)

which we now clearly recognize as a convex minimization problem
over a compact convex set. These are exactly the kind of problems
the Frank-Wolfe algorithm [8] was designed for.

The general procedure (presented with respect to the ingredients
of our problem) is summarized in Algorithm 1: given an initial
feasible guess µ0 as to the solution, each iteration of the algorithm
determines which point st in the feasible set ∆n−1 minimizes the
inner product −s⊺∇D(µt). This point is then used to update the
current estimate µt+1 = µt +

2
t+2 · [st − µt].

This conditional gradient scheme guarantees that updates never
leave the feasible set. Moreover, one can show that the estimate
µt in iteration t is O(1/t) away from the optimal solution [6]. This
provides a convenient criterion for choosing the number tmax of
iterations to be performed. For instance, if we had reason to believe
that a precision of 0.001 is good enough for our problem, it would
be sufficient to run tmax ∈ O(1000) iterations.

What is particularly interesting for our specific problem in (22)
is that its rather special form allows for very efficient computations
when running Frank-Wolfe. For instance, regarding the initial guess
µ0, we note that the midpoint of ∆n−1 is contained in ∆n−1 and
therefore feasible. Hence, we simply let

µ0 =
1
n 1 (23)

We also note that finding the step direction st in iteration t
involves the gradient of −D(µt) which amounts to

∇

(
−D

(
µt

))
= −∇D

(
µt

)
=

[
G +yy⊺ + 1

C I
]
µt (24)

Algorithm 2 Specific Frank-Wolfe algorithm for solving (22).
initialize

µ0 =
1
n 1

for t = 0, . . . , tmax
determine

i = argmin
j ∈{1, ...,n }

[[
G +yy⊺ + 1

C I
]
µt

]
j

update the current estimate

µt+1 = µt +
2

t+2 ·
[
ei − µt

]

Given this expression for the gradient, we realize that we have
to solve the following optimization problem

st = argmin
s ∈∆n−1

s⊺
[
G +yy⊺ + 1

C I
]
µt (25)

in each Frank-Wolfe iteration. Since this may still look daunting,
we next observe that the objective function in (25) is linear in
s and needs to be minimized over the compact convex set ∆n−1.
However, a minimum of a linear function over a compact convex set
is necessarily attained at a vertex of said set. As the vertices of ∆n−1
coincide with the standard basis vectors ej of Rn , we therefore only
have to determine which of these standard basis vectors minimizes
the objective. Hence, (25) simplifies to

ei = argmin
ej ∈Rn

e
⊺
j

[
G +yy⊺ + 1

C I
]
µt (26)

Next, we note that the inner product between a standard basis
vector ej and an arbitrary vectorv amounts to e⊺j v = vj wherevj is
the j-th entry ofv . This then means that (26) can be solved without
actually having to compute any inner product. We merely need
to determine the index of the smallest component of the gradient,
namely

i = argmin
j ∈{1, ...,n }

[[
G +yy⊺ + 1

C I
]
µt

]
j

(27)

Given these considerations, the update step in the general Frank-
Wolfe algorithms thus specializes to

µt+1 = µt +
2

t + 2
·
[
ei − µt

]
(28)

and we summarize all our problem specific adaptations or simplifi-
cations of the Frank-Wolfe procedure in Algorithm 2.

2.4 Intermediate Summary
We have now seen how to formalize the problem of training a kernel
L2 SVM (equation (22)), how to solve this problem (Algorithm 2),
and how to use this solution to let the SVM classify newly observed
data (equations (7) and (19)).

In the next section, we will put these theoretical insights into
practice and demonstrate how to implement all of this in NumPy.
As claimed in the title of this nugget, this will only require a few
lines of code.

C. Bauckhage and R. Sifa

Listing 1: training a (linear) L2 SVM
1 def trainL2SVM(matX , vecY , C=100., tmax =10000):
2 matK = computeLinearKernelMatrix(matX)
3
4 matY = np.outer(vecY , vecY)
5 matG = matK * matY
6 matH = matG + matY + np.eye(matX.shape [1]) / C
7
8 return fwL2SVM(matH , tmax)

3 PRACTICE
In this section, we demonstrate how to practically train an run
kernel L2 support vector machines for binary classification. We
structure our discussion into three parts: 1) training, 2) preparation
of application, and 3) application.

3.1 Training
In order to train an L2 SVM for binary classification, we need labeled
training data. In what follows, we therefore assume that the training
data points have been collected into a data matrix X ∈ Rm×n and
that the corresponding label values are available in y ∈ {−1,+1}n .
We further assume that this matrix and vector are implemented in
terms of NumPy arrays

matX = ...

vecY = ...

For linearly separable data such as those in Fig. 1(a), we may
work with a simple linear kernel

k
(
xi ,x j

)
= x
⊺
i x j (29)

To train a corresponding SVM, i.e. to determine the solution µ∗ to
the problem in (22), we may then simply call

vecM = trainL2SVM(matX , vecY)

using function trainL2SVM as defined in Listing 1. Its arguments
are the training data points and labels, the slack tuning parameter
C , and the maximum number of Frank-Wolfe iterations tmax.

Inside of this function, we first compute an n × n linear kernel
matrix K = X⊺X for the training data in X . To this end, we apply
function computeLinearKernelMatrix in Listing 2. Given K , we
can compute the matrix G = K ⊙ yy⊺ which we defined in (13).
Given G, we can then compute the matrix H = G + yy⊺ + 1

C I
which features prominently in the objective function of the dual
L2 SVM training problem. At this point, we have prepared all the
ingredients required to run the Frank-Wolfe algorithm for L2 SVM
training. We therefore call a corresponding function fwL2SVM and
return its result.

Function fwL2SVM is defined in Listing 3 and is a straightforward
NumPy implementation of the pseudo code in Algorithm 2.

Note: This implementation aims at readability rather than at
efficiency. The astute reader will have noticed that we implement
the step direction ei for the update in equation (28) as the i-th row
of the n × n identity matrix I . If n is large, this helper matrix will
consume considerable amounts of memory which may hamper the
whole procedure. Function fwL2SVM_V2 in Listing 3 realizes a much,
much more memory efficient but also less readable implementation
of the Frank-Wolfe algorithm. Can you see how and why it works?

Listing 2: computing a linear kernel matrix and vector
1 def computeLinearKernelMatrix(matX):
2 return matX.T @ matX
3
4 def computeLinearKernelVector(vecX , matX):
5 if vecX.ndim == 1: vecX = np.reshape(vecX , (-1,1))
6 return vecX.T @ matX

Listing 3: Frank-Wolfe procedures for L2 SVM training
1 def fwL2SVM(matH , tmax =1000):
2 m, n = matH.shape
3 matI = np.eye(n)
4
5 vecM = np.ones(n) / n
6
7 for t in range(tmax):
8 indx = np.argmin(matH @ vecM)
9 vecM += 2 / (t+2) * (matI[indx] - vecM)
10
11 return vecM
12
13
14
15 def fwL2SVM_V2(matH , tmax =1000):
16 _, n = matH.shape
17
18 vecM = np.ones(n) / n
19
20 for t in range(tmax):
21 indx = np.argmin(matH @ vecM)
22 vecM -= 2 / (t+2) * vecM
23 vecM[indx] += 2 / (t+2)
24
25 return vecM

Added together, we only needed 16 lines of readable code to set
up and accomplish L2 SVM training (6 lines in Listing 1, 2 lines in
Listing 2, and 8 lines in Listing 3). Moreover, our code is plain vanilla
NumPy code and does not require any special purpose functions
from external libraries. Training linear support vector machines is
really as simple as that.

But what if we wanted to train an SVM do deal with non-linearly
separable data such as in Fig. 1(b)? Here, we may, for instance, work
with the Gaussian kernel

k
(
xi ,x j

)
= exp

(
−

xi − x j
2

2σ 2

)
(30)

Will this require substantially more coding efforts? No, not at all!
To set up a corresponding Gaussian kernel matrix K , we can

use function computeGaussianKernelMatrix in Listing 4. For in-
stance, letting σ = 2, we would then simply have to replace line 2
in Listing 1 by

matK = computeGaussianKernelMatrix(matX , 2.0)

That is it! The difference between training an L2 SVM with a linear-
and a Gaussian kernel really just boils down to how the correspond-
ing kernel matrix is computed.

Speaking of computing kernel matrices, we note that function
computeGaussianKernelMatrix calls the function squaredEDM
which computes a matrix of squared Euclidean distances between
the columns of the two matrices passed as arguments. For an in-
depth explanation of the mechanism behind this function, we refer
to our earlier discussion in [2].

SVM Training Using 16 Lines of Plain Vanilla NumPy Code

Listing 4: computing a Gaussian kernel matrix and vector
1 def squaredEDM(matX , matY):
2 return spt.distance.cdist(matX.T, matY.T, 'sqeuclidean ')
3
4 def computeGaussianKernelMatrix(matX , sigma =1.):
5 return np.exp(-0.5 * squaredEDM(matX , matX) / sigma **2)
6
7 def computeGaussianKernelVector(vecX , matX , sigma =1.):
8 if vecX.ndim == 1: vecX = np.reshape(vecX , (-1,1))
9 return np.exp(-0.5 * squaredEDM(vecX , matX) / sigma **2)

Listing 5: running a (linear) L2 SVM
1 def runL2SVM(matXtst , matXs , vecYs , vecMs):
2 bias = -vecYs @ vecMs
3 vecK = computeLinearKernelVector(matXtst , matXs)
4
5 return np.sign((vecK * vecYs) @ vecMs - bias)

3.2 Preparation of Application
Above, we just saw how to practically solve the dual kernel L2
SVM training problem, i.e. how to determine an optimal vector µ∗
of Lagrange multipliers. Yet, before we naïvely set out to use this
vector to implement the classifier in (19), we note the following:

The solution µ∗ to the training problem in (22) is typically sparse!
That is, most of its entries are typically 0.

However, entries of µ∗ that are 0 will not contribute to the value
of the expression µ⊺∗

(
k(x)⊙y−y

)
that occurs in (19). Put differently,

entries µ j of µ∗ that are 0 will zero out the corresponding yj and
k(x j ,x) · yj . Indeed, this is well known and even reflected in the
name “support vector machine”, because those training data points
x j for which µ j , 0 are called the support vectors of the separating
hyperplane that is learned by the mathematical machinery.

In order to determine the support vectors, their labels, and their
Lagrange multipliers, we may therefore use

supps = np.where(vecM >0, True , False)

matXs = matX[:,supps]

vecYs = vecY[supps]

vecMs = vecM[supps]

This provides us with corresponding arrays of considerably reduced
size and thus allows for faster computations during application.

3.3 Application
In order to apply an L2 SVM for binary classification, we need test-
or application data. We therefore assume that corresponding data
points x have been gathered in a data matrix Xtst ∈ Rm×ntst which
is implemented as a NumPy array

matXtst = ...

Given this data, we have to compute a vector ytst ∈ {−1,+1}ntst

whose entries contain label predictions for each of the columns of
Xtst. To this end, we simply use

vecYtst = runL2SVM(matXtst , matXs , vecYs , vecMs)

where function runL2SVM is defined in Listing 5. Inside of this
function, we compute the bias value b∗ according to equation (7)
and an array whose columns represent the kernel vectors k(x) for
the columns of matrix Xtst. Our implementation again considers a
linear kernel and thus uses function computeLinearKernelVector

(a) result for the data in Fig. 1(a) (b) result for the data in Fig. 1(b)

Figure 2: Visualization of the decision boundaries of two
SVM classifiers trained on the data in Fig. 1. The classifier on
the left is an L2 SVM with a linear kernel, the one the right
is an L2 SVM with a Gaussian kernel. Both panels highlight
the support vectors which define the decision boundaries.

in Listing 2. If we wanted to work with Gaussian kernels, we could
instead use function computeGaussianKernelVector in Listing 4.

Given bias and vecK, we can evaluate our classifier for all the
given input data; this happens in line 5 which contains a straight-
forward NumPy implementation of the mathematics in (19).

Illustrations of the kind of results we obtain from this approach
are shown in Fig. 2. As the classifiers in this figure were trained on
the 2D training data in Fig. 1, their decision boundaries can easily
be visualized in 2D plots. The classifier on the left is an L2 SVM
with a linear kernel, the classifier on the right is an L2 SVM with a
Gaussian kernel (with σ = 2). Looking at didactic results like these
corroborates that L2 SVMs perform robust and reliably; looking
at the code we discussed in this nugget corroborates that they are
easy to train and to apply.

4 CONCLUSION
In this note, we fulfilled an earlier promise and demonstrated that
L2 support vector machines are downright easy to train. The key
insight was that we can use the Frank-Wolfe algorithm to solve
the dual training problem we derived in [5]. Our corresponding
implementation amounted to only 16 lines of plain vanilla NumPy
code and did not require any special purpose libraries whatsoever.

An interesting aspect we did not discuss is that Frank-Wolfe op-
timization can be understood in terms of recurrent neural network
computations [3]. This, in turn, allows for running neural networks
that train support vector machines [15] and we will study this in
detail in an upcoming note.

Compared to modern deep learning frameworks, support vec-
tor machines constitute rather simple baseline approaches. Nev-
ertheless, they achieve very good results in many data scientific
applications, especially in settings where training data is scarce
[4, 10, 12, 17]. Corresponding practical examples will be discussed
in later notes as well.

ACKNOWLEDGMENTS
This material was produced within the Competence Center for
Machine Learning Rhine-Ruhr (ML2R) which is funded by the
Federal Ministry of Education and Research of Germany (grant no.
01IS18038C). The authors gratefully acknowledge this support.

https://www.ml2r.de

C. Bauckhage and R. Sifa

REFERENCES
[1] C.M. Alaiz and J.A.K. Suykens. 2018. Modified Frank-Wolfe Algorithm for En-

hanced Sparsity in Support Vector Machine Classifiers. Neurocomputing 320, Dec
(2018).

[2] C. Bauckhage. 2014. NumPy / SciPy Recipes for Data Science: Squared Euclidean
Distance Matrices. researchgate.net. https://dx.doi.org/10.13140/2.1.4426.1127.

[3] C. Bauckhage. 2017. A Neural Network Implementation of Frank-Wolfe Opti-
mization. In Proc. ICANN.

[4] C. Bauckhage and K. Kersting. 2013. Data Mining and Pattern Recognition in
Agriculture. KI – Künstliche Intelligenz 27, 4 (2013).

[5] C. Bauckhage and R. Sifa. 2021. ML2R Theory Nuggets: The Dual Problem of L2
Support Vector Machine Training. Technical Report. MLAI, University of Bonn.

[6] K.L. Clarkson. 2010. Coresets, Sparse Greedy Approximation, and the Frank-
Wolfe Algorithm. ACM Trans. on Algorithms 6, 4 (2010).

[7] C. Cortes and V. Vapnik. 1995. Support Vector Networks. Machine Learning 20, 3
(1995).

[8] M. Frank and P. Wolfe. 1956. An Algorithm for Quadratic Programming. Naval
Research Logistics Quarterly 3, 1–2 (1956).

[9] T.T. Frieß and R.F. Harrison. 1998. The Kernel Adatron With Bias Unit: Analysis
of the Algorithm (Part 1). Technical Report ACSE Research Report 729. Dept. of

Automatic Control and Systems Engineering, University of Sheffield.
[10] H. Kondratiuk and R. Sifa. 2021. Swords, Data and Balls: Extracting Extreme

Behavioural Prototypes with Kernel Minimum Enclosing Balls. In Proc. CoG.
IEEE.

[11] O.L. Mangasarian and D.R. Musicant. 2001. Lagrangian Support Vector Machines.
J. of Machine Learning Research 1 (2001), 161–177.

[12] M. Neumann, L. Hallau, B. Klatt, K. Kersting, and C. Bauckhage. 2014. Erosion
Band Features for Cell Phone Image Based Plant Disease Classification. In Proc.
ICPR. IEEE.

[13] T.E. Oliphant. 2007. Python for Scientific Computing. Computing in Science &
Engineering 9, 3 (2007).

[14] B. Schölkopf, A.J. Smola, R.C. Williamson, and P.L. Bartlett. 2000. New Support
Vector Algorithms. Neural Computation 12, 5 (2000).

[15] R. Sifa, D. Paurat, D. Trabold, and C. Bauckhage. 2018. Simple Recurrent Neural
Networks for Support Vector Machine Training. In Proc. ICANN.

[16] J.A.K. Suykens and J.P.L. Venderwalle. 1999. Lest Squares Support Vector Machine
Classifiers. Neural Processing Letters 9, 3 (1999).

[17] Y. Wu, C. Thurau, and C. Bauckhage. 2010. The Good, the Bad, and the Ugly:
Predicting Aesthetic Image Labels. In Proc. ICPR. IEEE.

https://dx.doi.org/10.13140/2.1.4426.1127

	Abstract
	1 Introduction
	2 Theory
	2.1 Primal and Dual L2 SMV Training Problem
	2.2 Invoking the Kernel Trick
	2.3 Frank-Wolfe for L2 SVM Training
	2.4 Intermediate Summary

	3 Practice
	3.1 Training
	3.2 Preparation of Application
	3.3 Application

	4 Conclusion
	References

