
ML2R Coding Nuggets
Kernel PCA for Word Embeddings

Christian Bauckhage
Machine Learning Rhine-Ruhr

Fraunhofer IAIS
St. Augustin, Germany

ABSTRACT
We address the general problem of computing word embeddings
and discuss a simple yet powerful solution involving intersection
string kernels and kernel principal component analysis. We discuss
the theory behind kernel PCA for word embeddings and present
corresponding Python / NumPy code. Overall, we demonstrate that
the whole framework is very easy to implement.

1 INTRODUCTION
Previously [2], we already pointed out that machine learning for
language processing often requires vectorial representations of
words. Such embeddings of words into Euclidean vector spaces
are now commonly computed using skip gram- or transformer
models which learn semantic representations [10, 12, 16, 18]. Yet,
simpler syntactic representations have their merits, too [4, 7, 8, 13].
They facilitate morphologically rich language processing, cope with
infrequent or out-of-vocabulary words, and can be trained on small
corpora. Last but not least, the underlying learning algorithms are
light weight and easy to implement.

This note once again demonstrates the latter. We have already
seen that plain vanilla Python makes it easy to implement so called
intersection string kernels [2]. Here, we implement NumPy code
for kernel principal component analysis (kPCA) and discuss how it
allows for the embedding of words into the space spanned by the
feature space principal components of a given vocabulary. This is
useful for various downstream processing tasks, allows for visual
analytics of whole vocabularies, and seamlessly extends to out-of-
vocabulary words.

In section 2, we first recall the gist of our earlier discussion of
intersection string kernels. We then discuss the general ideas and
mathematics behind kernel PCA and how it applies to the problem
of computing vector space embeddings of words (or, if need be, of
whole sentences, paragraphs, or texts). In section 3, we put this
theory into practice and discuss NumPy code for kernel PCA and
subsequent projections onto kernel principal components. Note
that our discussion assumes that readers have already had some
experience with applied linear algebra and are familiar with the
notion and properties of the eigenvalues and eigenvectors of a
(sample covariance) matrix.

As always, we also expect that our readers have worked with
Python andNumPy [17] before. Those whowould like to experiment
with our code snippets need to

import numpy as np

import numpy.linalg as la

from collections import Counter

bouvier patty muntz nelson
bouvier selma nahasapeemapetilon apu
brockman kent prince martin
burns charles montgomery qumby joe
carlson carl riviera dr. nick
chalmers gary simpson bart
flanders ned simpson homer
flanders rod simpson lisa
flanders todd simpson maggie
frink prof. john simpson marge
gumbel barney skinner agnes
hibbert dr. julius skinner seymour
krabappel edna smithers waylon
leonard lenny syslack moe
lovejoy helen van houten luann
lovejoy timothy van houten milhouse
mann otto wiggum clancy
moleman hans wiggum ralph

Figure 1: A didactic vocabulary of 36 words.

2 THEORY
Next, we first recap theory (and practice) of intersection string ker-
nels. We then discuss kernel principal component analysis (kPCA)
and how it applies to the practical problem of computing word
embeddings.

2.1 Recap: Intersection String Kernels
An alphabet A of size |A| =m is a set ofm symbols {a1, . . . ,am }.
A string s of length l over an alphabet A is an ordered sequence of
symbols s[i] ∈ A

s = s[1] : s[2] : . . . : s[l] (1)

We also write s ∈ A∗ where A∗ is the set of all possible sequences
(finite or infinite) of symbols in A. If a string has length l , it is
also an element of Al ⊂ A∗ which denotes the set of all strings of
length l over A.

The multiset of n-grams of a string s is the multiset

Mn (s) =
{
s[i] : . . . : s[i + n − 1]

��� 1 ≤ i ≤ l − n + 1
}

(2)

of all contiguous sub-strings of s of length n. The multiplicity of
an n-gram д ∈ Mn (s) counts how often д occurs inMn (s) and is
denoted bymMn (s)(д).

When working with Python, simple lists are a natural choice
for implementing multisets and corresponding plain vanilla Python
code for computing the n-grams of a string is shown in Listing 1.

https://orcid.org/0000-0001-6615-2128

C. Bauckhage

Listing 1: computing the n-grams of a string s
def n_grams(s, n):

return map(''.join , zip(*[s[i:] for i in range(n)]))

Listing 2: computing the n-gram histogram of a string s
def n_gram_hist(s, n):

return Counter(n_grams(s, n))

Listing 3: computing the intersection kernel of stings si , sj
def intersection_str_kernel(si, sj, n):

hi = n_gram_hist(si, n)
hj = n_gram_hist(sj, n)

return sum((hi & hj). values ())

The n-gram histogram hn,s of a string s over A can be though
of as a discrete function

hn,s : An → N (3)

such that hn,s [д] =mMn (s)(д) and, by convention, hn,s [д] = 0 if д
is not a substring of s .

In Python, a natural data structure for implementing histograms
over hashable objects (such as text strings) is the dictionary subclass
Counter provided by the module collectionswhich is part of the
standard library. Corresponding code for computing an n-gram
histograms of of string is shown in Listing 2.

The size of the intersection of the n-gram histograms of two
strings si and sj can be formalized as

kn
(
si , sj

)
=

∑
д∈An

min
{
hn,si [д], hn,sj [д]

}
(4)

and counts how many n-grams the two strings have in common.
Working with Python, it is again easy to compute the expression

in (4). This is because the operator & can intersect counters. We
therefore neither have to worry about summing over the д ∈ An

nor about computing minima. Correspondingly simple code is
shown in Listing 3.

Finally, we recall that one can show that function kn (·, ·) in (4)
is an instance of a Mercer kernel [2].

2.2 Kernel PCA
If kn

(
si , sj

)
is a Mercer kernel, then theory tells us that it implicitly

computes an inner product in some Hilbert space H. This means
that there has to exist some feature map φ : A∗ → H which turns
strings si and sj into feature vectors

φi = φ(si) (5)
φ j = φ(sj) (6)

such that

kn
(
si , sj

)
= φ
⊺
i φ j (7)

The crux is that we typically do not know any details about
the nature of φ or H. Or, even if we did , it may still be practically
infeasible to implement Hilbert space feature vectors on a computer.

The latter is the case for themapφ : A∗ → Hwhichwe constructed
in [2] in order to prove that kn

(
si , sj

)
is a Mercer kernel.

However, from the point of view of “pen-and-paper math”, we
can still work with φ and H. Understanding them as abstract math-
ematical constructs allows us to perform abstract mathematical
operations on them. This principle will guide our following discus-
sion and, once that discussion reaches its conclusion, all occurrences
of feature space vectors will be in form of inner products which
can then be swapped for kernel evaluations. In other words, the
Hilbert space math we study next is practically computable.

In language processing practice, we typically work with whole
sets of strings or vocabularies of words. According to what we just
said, we can conceptualize such a vocabulary in terms of a set of
feature vectors which we may gather in a matrix

Φ =
[
φ1 · · ·φN

]
∈ Rdim[H]×N (8)

For the time being, we will assume that these data are centered.
In other words, we will assume that their feature space mean vector
is the vector of all zeros. Formally, we state this as

1
N Φ 1 = 0 (9)

Note:We only make this assumption to keep our equations legible.
In practice, it will rarely hold; but this is not an issue to worry about.
As we shall see soon, there is an easy solution to the feature space
centering problem.

Having conceptualized the feature space data matrix Φ, we can,
again conceptually, consider the dim[H] × dim[H] feature space
sample covariance matrix

C = 1
N ΦΦ⊺ (10)

and ask for its eigenvalues λr and feature space eigenvectors ur
Cur = λr ur (11)

to see if these reveal structural properties or other insights into the
nature of our data.

To tackle these feature space eigenvector / eigenvalue problems,
we first note the equivalencies

1
N ΦΦ⊺ur = λr ur (12)

⇔ ΦΦ⊺ur = λ̃r ur (13)

⇔ Φvr = λ̃r ur (14)

where

λ̃r ≡ N λr (15)
vr ≡ Φ⊺ur (16)

Looking at (14), we observe that each eigenvectorur of 1/N ΦΦ⊺

is a linear combination of the columnsφ j ofΦ. We also emphatically
emphasize that ur ∈ H whereasvr ∈ RN .

Continuing from (14), we further have

Φvr = λ̃r ur (17)

⇔ Φ⊺Φvr = λ̃r Φ
⊺ur (18)

⇔ Φ⊺Φvr = λ̃r vr (19)

and note the crucial fact that Φ⊺Φ is an N ×N Gram matrix whose
entries are given by[

Φ⊺Φ
]
i j = φ

⊺
i φ j (20)

Kernel PCA for Word Embeddings

However, as the right hand side of (20) is the same as the right
hand side of (7), we can now invoke the kernel trick and replace
inner products by kernel evaluations[

Φ⊺Φ
]
i j = kn

(
si , sj

)
(21)

which can actually be implemented on a computer. In other words,
the kernel trick allows us to leave the realm of purely conceptual
math and enter the domain of practical computability.

In fact, we can introduce a whole kernel matrixK ∈ RN×N with
entries [

K
]
i j = kn

(
si , sj

)
(22)

and henceforth consider the eigenvector / eigenvalue problems

K vr = λ̃r vr (23)

Using software for numerical computing, these are easily solved,
and, indeed, NumPy has us covered. But we need to discuss some
more theory before we can dive into coding.

The important intermediate result at this point is that (23) allows
for practically solving for the coefficient vectorsvr ∈ RN which,
according to (14), conceptually determine the sought after feature
space eigenvectors ur ∈ H. However, we still must address several
technical details.

First of all, using NumPy methods to solve (23) will produce
eigenvectors vr which are normalized to unit length ∥vr ∥ = 1.
But what we are actually after are feature space eigenvectors ur of
length ∥ur ∥ = 1. We therefore need to re-normalize thevr that are
produced by our software.

To infer the correct normalization, we left-multiply (14) by u⊺r
to obtain u

⊺
r Φvr = λ̃r u

⊺
r ur . Using (16), this can also be written

as v⊺r vr = λ̃r u
⊺
r ur . Since we want the ur to be unit vectors, we

posit u⊺r ur = 1. But this is then to say that
1
λ̃r

v
⊺
r vr = 1 (24)

from which we deduce the required re-normalization, namely

vr ←
vr√
λ̃r

(25)

Note: It may happen that some of the eigenvalues of the kernel
matrix K are 0. In other words, if we assume that the eigenvalues
are ordered descendingly λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃N−1 ≥ λ̃N , there
may be an λ̃p > 0 such that λ̃p+1 = . . . = λ̃N = 0. Practical
implementations must pay attention to this potential issue in order
to avoid (division by zero) runtime errors.

Second of all, to keep our equations clean, we assumed that
matrix Φ was centered. While this will rarely be the case, a matrix
which is guaranteed to be centered is Φ J where

J = I − 1
N 11⊺ (26)

is the centering matrix we studied before [3]. From our discus-
sion back then, we recall the following practically crucial insights:
Replacing each occurrence of Φ in (19) by Φ J , we obtain

J⊺ Φ⊺Φ J vr = λ̃r vr (27)

⇔ J K J vr = λ̃r vr (28)

⇔ Kc vr = λ̃r vr (29)

Listing 4: centering a kernel matrix
def center_kernel_matrix(matK):

_, n = matK.shape
rsum = np.sum(matK ,axis =1). reshape(1,n)
csum = rsum.reshape(n,1)
tsum = np.sum(rsum)
return matK - rsum/n - csum/n + tsum/n**2

But this is to say that we do not need to worry about centering
the possibly unknown or unobtainable feature space data matrix
Φ. All we need to do is to center our kernel matrix K . This can be
accomplished as follows

Kc = J K J (30)

=
[
I − 1

N 11⊺
]
K

[
I − 1

N 11⊺
]

(31)

=
[
K − 1

N 11⊺K
] [

I − 1
N 11⊺

]
(32)

= K − 1
N 11⊺K − 1

N K11⊺ + 1
N 2 11

⊺K 11⊺ (33)

and function center_kernel_matrix in Listing 4 implements this
in an efficient, very numpythonic manner.

2.3 Kernel PCA for Word Embeddings
All the above was possibly well known and straightforward, but
now the crucial questions are:What canwe dowith the eigenvectors
vr of our (centered) intersection string kernel matrixKc ? What are
they actually good for?

Well, as teased in the introduction, a prime application of kernel
PCA on string kernel matrices is the computation of vector space
embeddings of the words in our vocabulary. To see how to proceed,
we still need some more theory.

Given any string s ∈ A∗, our general idea is to project feature
space vectors φ(s) ∈ H onto feature space eigenvectors ur ∈ H to
obtain numbers xr (s) ∈ R. In other words, the idea is to compute

xr (s) = φ(s)⊺ur (34)

Why? Because, if we did this for r ∈ {1, 2, . . . ,d}, we would obtain
a real valued vector

x(s) =


x1(s)
x2(s)
...

xd (s)


(35)

which provided us with an “actionable” vector representation of
string s , that is, one that does not live in some abstract or conceptual
Hilbert space H but in the familiar Euclidean space Rd .

At first sight, this may seem impractical because, as stressed
above, we usually cannot compute with vectors φ(s),ur ∈ H.

Yet, once again, the kernel trick comes to our rescue. This is
because equation (14) allows us to rewrite the feature space inner
product φ(s)⊺ur as follows

φ(s)⊺ur =
1
λ̃r
φ(s)⊺Φvr (36)

Note: Division by λ̃r is dictated by (14). However, at this point
this constitutes mere scaling and does not fundamentally impact
the value of the inner product (by which we mean that it may scale

https://en.wikipedia.org/wiki/Kernel_method

C. Bauckhage

its value but will leave its sign intact). We therefore simply drop
this scaling and consider

φ(s)⊺ur = φ(s)⊺Φvr (37)

Now, looking at the expressionφ(s)⊺Φ, we realize that it involves
inner products between the feature space vectorφ(s) and the feature
space vectors φ1, . . . ,φN gathered in matrix Φ. But this is to say
that we may write

φ(s)⊺Φvr = k(s)
⊺vr = v

⊺
r k(s) (38)

where the entries of the kernel vector k(s) ∈ RN are given by[
k(s)

]
j = φ(s)⊺φ j = kn

(
s, sj

)
(39)

In other words and in conclusion, an embedding of a string s

into a vector space Rd can be computed as

x(s) = V
⊺
d k(s) (40)

where matrix

Vd =
[
v1 · · ·vd

]
∈ RN×d (41)

contains the (properly re-normalized) k leading eigenvectors of the
centered kernel matrix Kc

One final remark appears to be in order: If we want to compute
(41) for the strings si in the vocabulary from which we computed
the (original, i.e. non-centered) kernel matrix K , we have hardly
any work to do. This is because [k(si)]r = φ

⊺
i φ j so that k(si) is

nothing but the i-th column of K .
A matrix X whose columns represents embeddings of all the

words in our vocabulary can thus be computed as easily as

X = V
⊺
d K (42)

3 PRACTICE
This section shows how to implement the ideas we just expounded.
To work with a practical example, we consider the vocabulary in
Fig. 1 which we represent as a Python list of strings

VOC = ["bouvier patty", ..., "wiggum ralph"]

Given this vocabulary, we begin by computing a list of n-gram
histograms. Opting for n = 3, this can be accomplished by means of

n = 3

vocHists = [n_gram_hist(word , n) for word in VOC]

Based on this list, we can compute a corresponding intersection
string kernel matrix K . For this, we call compute_kernel_matrix
in Listing 5 as follows

matK = compute_kernel_matrix(vocHists)

and obtain a corresponding NumPy array.
Next, we need to produce a centered kernel matrix Kc . This can

be accomplished via
matKc = center_kernel_matrix(matK)

Having thus computed an array representation of matrix Kc ,
we can solve the eigenvector / eigenvalue problems Kcvr = λ̃r vr .
This can happen simultaneously, if we solve the repsective matrix
problem KcV = ΛV . Using NumPy, this is easy. Noting that Kc is a
symmetric matrix, i.e. Kc = K

⊺
c , we should resort to the efficient

function la.eigh which we used before [1]. Calling
vecL , matV = la.eigh(matKc)

Listing 5: computing an intersection string kernel matrix
def compute_kernel_matrix(hs):

matK = np.zeros((len(hs), len(hs)))

for i, h_i in enumerate(hs):
for j, h_j in enumerate(hs[i:], i):

matK[i,j] = sum((h_i & h_j). values ())
matK[j,i] = matK[i,j]

return matK

Listing 6: computing an intersection string kernel vector
def compute_kernel_vector(h, hs):

vecK = np.zeros(len(hs))

for i, h_i in enumerate(hs):
vecK[i] = sum((h & h_i). values ())

return vecK

we obtain a vector λ̃ of ascending eigenvalues and a matrix V
whose columns contain the corresponding eigenvectorsvr . Zero
eigenvalues and corresponding eigenvectors can be discarded via

mask = vecL > 0

vecL = vecL[mask]

matV = matV[:,mask]

so that the eigenvector normalization according to (25) can safely
be computed as

matV = matV / np.sqrt(vecL)

Now, in order to be able to visualize our results, wewill embed the
words in our vocabulary intoR2. That is, wewill computeX = V ⊺2 K .
Here, we need to remember that la.eigh returns eigenvalues /
eigenvectors in ascending order. Since we are interested in leading
eigenvectors, we may therefore proceed as follows

dims = (-1,-2)

matX = matV[:,dims].T @ matK

If we plot the data in the columns of array matX as 2D points
(and annotate them with the words they represent), we obtain a
picture such as shown in Fig. 2a. Looking at this figure, it becomes
clear why we referred to our framework as a syntax oriented way
of computing word embeddings: Syntactically similar words end
up near to each other in the embedding space R2.

This was straightforward, wasn’t it? But we also claimed that
our approach extends to out-of-vocabulary words. So, to convince
ourselves that it really does, we observe that our vocabulary in
Fig. 1 lacks many words one would expect to see in the domain it
has been sampled from. Let us therefore consider the following list
of out-of-vocabulary words

OOV = ["flanders maude", "simpson abe",

"van houten kirk"]

and compute kernel vectors for its elements.
Reusing our previous code, i.e. reusing list vocHists of tri-gram

histograms, we may get these vectors for any word in OOV using

hist = n_gram_hist(word , n)

vecK = compute_kernel_vector(hist , vocHists)

Kernel PCA for Word Embeddings

bouvier pattybouvier selma

brockman kent

burns charles montgomerycarlson carl

chalmers gary

flanders nedflanders rodflanders todd

frink prof. john
gumbel barney

hibbert dr. julius
krabappel ednaleonard lennylovejoy helenlovejoy timothy

mann otto

moleman hans

muntz nelsonnahasapeemapetilon apu
prince martin

qumby joe
riviera dr. nick

simpson bart

simpson homer

simpson lisasimpson maggiesimpson marge

skinner agnesskinner seymour

smithers waylon

syslack moe

van houten luann

van houten milhouse

wiggum clancy

wiggum ralph

(a) 2D embedding of the vocabulary in Fig. 1

bouvier pattybouvier selma

brockman kent

burns charles montgomerycarlson carl

chalmers gary

flanders nedflanders rodflanders todd

frink prof. john
gumbel barney

hibbert dr. julius
krabappel ednaleonard lennylovejoy helenlovejoy timothy

mann otto

moleman hans

muntz nelsonnahasapeemapetilon apu
prince martin

qumby joe
riviera dr. nick

simpson bart

simpson homer

simpson lisasimpson maggiesimpson marge

skinner agnesskinner seymour

smithers waylon

syslack moe

van houten luann

van houten milhouse

wiggum clancy

wiggum ralph

flanders maude

simpson abe

van houten kirk

(b) additional embeddings of 3 out-of-vocabulary words

Figure 2: Examples of kPCA-based vector space embeddings of in- and out-of-vocabulary words.

where function compute_kernel_vector is defined in Listing 6.
In fact, we should compute a whole matrix Y whose columns

represent 2D word embeddings of our out-of-vocabulary words.
Given what we just discussed, this can be accomplished via

matY = np.zeros ((3 ,2))

for i, word in enumerate(OOV):

hist = n_gram_hist(word , n)

vecK = compute_kernel_vector(hist , vocHists)

matY[i] = matV[:,dims].T @ vecK

matY = matY.T

If we plot the resulting embeddings of the words in OOV together
with the previously computed embeddings of the words in VOC, we
obtain a picture such as in Fig. 2b.

It is noticeable that the newly embedded OOV words end up
close to lexically similar VOC words. This once again suggests that
our approach is reasonable. Using intersection string kernels and
kernel PCA, it is rather easy to map strings s ∈ A∗ to vectors
x(s) ∈ Rd . The resulting vector space embeddings reflect syntactic
commonalities among given words and can thus provide useful
structural information for a variety of downstream task.

4 CONCLUSION
Natural language processing for intelligent document analysis is
a central topic of our work in ML2R. While many applications
demand the use of powerful neural nets [5, 6, 9, 11, 14, 15, 19–
21], there also are situations where more light weight approaches
are preferable [4, 7, 8, 13]. A central machine learning problem in
most of these settings is (to learn) to represent words, sentences,

paragraphs, or even larger texts in terms of numerical vectors for
further analysis.

In this note, we demonstrated that computing such vector space
embeddings does not have to be demanding or training time inten-
sive. Indeed, working with string kernels and kernel PCA hardly
requires any training at all. Still, the framework yields useful nu-
merical representations which reflect lexical similarities. This may
be beneficial when dealing with languages where constituents of
words carry substantial grammatical information.

The practical examples presented in this note were hopefully
compelling but, at the same time, so simple that they could be
computed on the fly. It goes without saying that real world ap-
plications which deal with much larger vocabularies would need
components for efficient data management. That is, words, their
n-gram histograms and vector representations, as well as whole
kernel matrices should be stored in data bases which allow for fast
access and easy extensibility.

ACKNOWLEDGMENTS
This material was produced within the Competence Center for
Machine Learning Rhine-Ruhr (ML2R) which is funded by the
Federal Ministry of Education and Research of Germany (grant no.
01IS18038C). The authors gratefully acknowledge this support.

REFERENCES
[1] C. Bauckhage. 2015. NumPy / SciPy Recipes for Data Science: Eigenvalues /

Eigenvectors of Covariance Matrices. researchgate.net. https://dx.doi.org/10.
13140/RG.2.1.2307.5046.

[2] C. Bauckhage. 2022.ML2R Coding Nuggets: Intersection String Kernels for Language
Processing. Technical Report. MLAI, University of Bonn.

[3] C. Bauckhage and P. Welke. 2021. ML2R Theory Nuggets: Centering Data- and
Kernel Matrices. Technical Report. MLAI, University of Bonn.

https://www.ml2r.de
https://dx.doi.org/10.13140/RG.2.1.2307.5046
https://dx.doi.org/10.13140/RG.2.1.2307.5046

C. Bauckhage

[4] M. Beeksma, M. van Gompel, F. Kunneman, L. Onrust, B. Regnerus, D. Vinke,
E. Brito, C. Bauckhage, and R. Sifa. 2018. Detecting and Correcting Spelling
Errors in High-quality Dutch Wikipedia Text. Computational Linguistics in the
Netherlands J. 8 (2018), 122–137.

[5] D. Biesner, R. Ramamurthy, M. Lübbering, B. Fürst, H. Ismail, L. Hillebrand,
A. Ladi, M. Pielka, R. Stenzel, T. Khameneh, V. Krapp, I. Huseynov, J. Schlums,
U. Stoll, U. Warning, B. Kliem, C. Bauckhage, and R. Sifa. 2020. Leveraging
Contextual Text Representations for Anonymizing German Financial Documents.
In Proc. Knowledge Discovery from Unstructured Data in Financial Services. AAAI.

[6] D. Biesner, R. Ramamurthy, R. Stenzel, M. Lübbering, L. Hillebrand, A. Ladi, M.
Pielka, R. Loitz, C. Bauckhage, and R. Sifa. 2022. Anonymization of German Finan-
cial Documents Using Neural Network-based Language Models with Contextual
Word Representations. Int. J. of Data Science and Analytics 13, 2 (2022).

[7] E. Brito, B. Georgiev, D. Domingo-Fernandez, C.T. Hoyt, and C. Bauckhage.
2019. RatVec: A General Approach for Low-dimensional Distributed Vector
Representations via Rational Kernels. In Proc. KDML-LWDA.

[8] E. Brito, R. Sifa, and C. Bauckhage. 2017. KPCA Embeddings: An Unsupervised
Approach to Learn Vector Representations of Finite Domain Sequences. In Proc.
KDML-LWDA.

[9] E. Brito, R. Sifa, C. Bauckhage, R. Loitz, U. Lohmeier, and C. Pünt. 2019. A
Hybrid AI Tool to Extract Key Performance Indicators from Financial Reports
for Benchmarking. In Proc. Symposium on Document Engineering. ACM.

[10] T. Brown and et al. 2020. Language Models Are Few-Shot Learners. In Proc.
NeurIPS.

[11] C.L. Chapman, L.P. Hillebrand, M.R. Stenzel, T. Deusser, D. Biesner, C. Bauckhage,
and R. Sifa. 2022. Towards Generating Financial Reports from Tabular Data Using
Transformers. In Proc. Cross Domain Conf. for Machine Learning and Knowledge
Extraction (CD-MAKE).

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proc. NAACL.

[13] V. Gupta, S. Giesselbach, S. Rüping, and C. Bauckhage. 2019. Improving Word
Embeddings Using Kernel PCA. In Proc. Workshop on Representation Learning for
NLP @ ACL.

[14] L.P. Hillebrand, D. Biesner, C. Bauckhage, and R. Sifa. 2020. Interpretable Topic
Extraction and Word Embedding Learning Using Row-Stochastic DEDICOM.
In Proc. Cross Domain Conf. for Machine Learning and Knowledge Extraction
(CD-MAKE).

[15] L.P. Hillebrand, T. Deußer, T. Dilmaghani Khameneh, B. Kliem, R. Loitz, C. Bauck-
hage, and R. Sifa. 2022. KPI-BERT: A Joint Named Entity Recognition and Relation
Extraction Model for Financial Reports. arXiv:2208.02140 [cs.CL] (2022).

[16] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed
Representations of Words and Phrases and Their Compositionality. In Proc. NIPS.

[17] T.E. Oliphant. 2007. Python for Scientific Computing. Computing in Science &
Engineering 9, 3 (2007).

[18] M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer. 2018. Deep Contextualized Word Representations. In Proc. NAACL.

[19] M. Pielka, A. Ladi, C. Chapman, E. Brito, R. Ramamurthy, P. Mayer, A. Wahab, R.
Sifa, and C. Bauckhage. 2020. Using Ensemble Methods and Sequence Tagging
to Detect Causality in Financial Documents. In Proc. FinCausal.

[20] M. Pielka, R. Sifa, L. Hillebrand, D. Biesner, R. Ramammurthy, A. Ladi, and C.
Bauckhage. 2021. Tackling Contradiction Detection in German Using Machine
Translation and End-to-End Recurrent Neural Networks. In Proc. ICPR.

[21] R. Ramamurthy, M. Pielka, R. Stenzel, C. Bauckhage, R. Sifa, T. Khameneh, U.
Warning, B. Kliem, and R. Loitz. 2021. ALiBERT: Improved Automated List
Inspection (ALI) with BERT. In Proc. Symposium on Document Engineering. ACM.

	Abstract
	1 Introduction
	2 Theory
	2.1 Recap: Intersection String Kernels
	2.2 Kernel PCA
	2.3 Kernel PCA for Word Embeddings

	3 Practice
	4 Conclusion
	References

