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ABSTRACT
This is the first in a miniseries of notes on kernel methods for
language processing. We discuss the idea of measuring n-gram
similarities of words by computing intersection string kernels and
demonstrate that the Python standard library allows for compact
implementations of this idea.

1 INTRODUCTION
Most machine learning methods for natural language processing
require numerical vector representations of words. Nowadays, such
word embeddings are usually computed using context-free or bi-
directional contextual models. These involve architectures such
as skip gram- or transformer networks and can learn semantic
representations [9, 11, 17–19].

Yet, simpler syntax-based representations still have their merits,
too. They offer benefits when processing texts of morphologically
rich languages such as German or Turkish [5], cope with infrequent
or out-of-vocabulary words [3, 12], and can be trained on small
corpora [7]. Last but not least, the underlying learning algorithms
are easy to implement [6].

This note practically demonstrates the latter. In particular, we
show that plain vanilla Python makes it super easy to implement
code that computes intersection string kernels [14].

String kernel such as these have many practical applications. For
instance, in combination with kernel PCA, they allow for embed-
ding words into the space spanned by the feature space principal
components of a given vocabulary. This can be used to visualize
whole vocabularies (see Fig. 1) and seamlessly extends to out-of-
vocabulary words.

Yet, in order to keep this note short, we leave the discussion of
theory and practice of such applications to later.

The main part of this note is section 2 where we look at theory
and practice alike. Indeed, for experienced Python programmers, it
may be downright trivial to implement the techniques we discuss.
Yet, as the underlying theory is not necessarily trivial, it seems
appropriate to interlace our theoretical discussion with practical
coding examples.

Another major part is found in the appendix where we show that
intersection string kernels are actually Mercer kernels. However,
the material presented there is not essential to readers who are
mainly interested in the more practical aspects of the topic covered
in this note.

As always, readers are expected to be passingly familiar with
Python. Those who would like to experiment with the simple code
snippets we provide only need to

from collections import Counter
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Figure 1: A didactic vocabulary ofwords and 2D embeddings
computed via KPCA on intersection string kernel matrices.
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2 THEORY & PRACTICE
Given the venerable history of string kernels [15, 16], intersection
string kernels [14] appeared surprisingly late in the game. The sur-
prise is that they are essentially but histogram intersection kernels
which have long been used in computer vision [1].

In this section, we discuss the underlying ideas and basic ingredi-
ents of intersection string kernels. Since Python makes it very easy
to implement them, practical coding examples will be interlaced
with our theoretical discussion. First, however, we need to recall
several more basic concepts.

An alphabet A of size |A| =m is a set of symbols {a1, . . . ,am }.
Since our overriding interest lies in language processing, all our
examples in this note will consider the alphabet

A =
{
a, b, . . . , z, ␣

}
(1)

of lower case Latin letters together with the character ␣ which
denotes a blank space.

A string s over an alphabet A is a sequence of symbols s ∈ A∗

whereA∗ is the Kleene star or set of all possible sequences (finite
or infinite) of symbols in A. If a string s is a sequence of l symbols,
it is a string of length |s | = l . It is also an element of Al ⊂ A∗

which is the set of all strings of length l over A. If the size of A is
m, then the size of Al isml .

2.1 n-Grams
The multiset of n-grams (or n-spectrum) of a string s is the multiset
Mn (s) of all its contiguous sub-strings of length n.

Since the meaning behind this definition becomes immediately
apparent from looking at examples, let us consider these exemplary
strings over the alphabet in (1)

s1 = "homer simpson"

s2 = "lenny leonard"

s3 = "ned flanders"

Their multisets of bi-grams (n = 2) are

M2(s1) =
{
"ho", "om", "me", "er", "r ", " s",

"si", "im", "mp", "ps", "so", "on"
}

M2(s2) =
{
"le", "en", "nn", "ny", "y ", " l",

"le", "eo", "on", "na", "ar", "rd"
}

M2(s3) =
{
"ne", "ed", "d ", " f", "fl", "la",

"an", "nd", "de", "er", "rs"
}

and their multisets of tri-grams (n = 3) are

M3(s1) =
{
"hom", "ome", "mer", "er ", "r s", " si",

"sim", "imp", "mps", "pso", "son"
}

M3(s2) =
{
"len", "enn", "nny", "ny ", "y l", " le",

"leo", "eon", "ona", "nar", "ard"
}

M3(s3) =
{
"ned", "ed ", "d f", " fl", "fla", "lan",

"and", "nde", "der", "ers"
}

Listing 1: computing the n-grams of a string s
def n_grams(s, n):

return map(''.join , zip(*[s[i:] for i in range(n)]))

Just to be clear, we reiterate that our examples in this note treat
blank spaces as normal charters. That is, we understand strings such
as "homer simpson" as a single word which happens to contain a
blank.1 Such blanks therefore occur in several of the above bi- and
tri-grams.

We also point out that a multiset generalizes the notion of a
set. Whereas the elements x of a set X must be distinct, i.e. only
occur once, a multiset Y allows for multiple instances for each of
its elements y. The number of occurrences of an element y ∈ Y is
called its multiplicity and is denoted bymY (Y ). For instance, for
the bi-grams "le" and "en" in the above multisetM2(s2), we have

mM2(s2)("le") = 2
mM2(s2)("en") = 1

In Python, the natural data structure for multisets are lists. Even
better, Python makes it ridiculously easy to compute n-grams of
text strings. This is because it treats strings as iterable objects and
provides a str class for convenient string processing. Our function
n_grams in Listing 1 takes full advantage of these features and was
previously explained in [2]. Using it, we can create n-gram lists for
arbitrary strings. For instance

for n in [2,3,4]:

print (list(n_grams("homer simpson", n)))

results in

>>> ['ho', 'om', 'me', 'er', 'r ', ' s',

'si', 'im', 'mp', 'ps', 'so', 'on']

>>> ['hom', 'ome', 'mer', 'er ', 'r s', ' si',

'sim', 'imp', 'mps', 'pso', 'son']

>>> ['home', 'omer', 'mer ', 'er s', 'r si',

' sim', 'simp', 'imps', 'mpso', 'pson']

which agrees with what we would expect from our discussion up
to this point.

Now that we know how to compute n-grams, let us have a closer
look at, say, the bi-grams of our exemplary strings s1, s2, and s3. In
particular, let us see if there are any commonalities.

Apparently, s1 and s2 share the bi-gram "on". Moreover, s1 and s3
share the bi-gram "er" whereas s2 and s3 do not share any bi-gram
at all.

Based on observations like these, it seems reasonable to say that
strings s1 and s2 as well as s1 and s3 are somewhat similar. Strings
s2 and s3, on the other hand, appear to be dissimilar.

In general, we could of course also resort to n-grams with n > 2
to come up with such statements about similarity. But how could or
rather should we quantify the n-gram similarity of two any strings
si and sj ?

1Usually, we would treat strings with blank spaces as sequences of two or more words,
say "homer" and "simpson". But, for this note, we deliberately decided not to do this.
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Listing 2: computing the n-gram histogram of a string s
def n_gram_hist(s, n):

return Counter(n_grams(s, n))

2.2 n-Gram Histograms
Our first step towards quantifying n-gram string similarities is
to compute n-gram histograms of strings. As we shall see, the
formal specification of this idea is more involved than its practical
implementation. But let us be formal anyway.

To begin with, we recall that the purpose of a histogram is to
count how often certain objects appear in some collection. In our
case, the objects to be counted are n-grams and the collection they
are to be counted in is the multiset of n-grams of a given string.
There are (at least) two ways of formalizing the respective counting
mechanism. We can think of the n-gram histogram hn,s of a string
s over A as a discrete function

hn,s : An → N (2)

or as a relation

hn,s ⊂ An × N (3)

Both points of view have their merits for our purposes in this note,
but, for now, we will only consider the second one.

This requires us to recall the notion of the support of a multiset
which is but the underlying set of a multiset. In our context, the
support set Sn (s) of the multiset Mn (s) of n-grams of a string
s ∈ A∗ is given by

Sn (s) =
{
д ∈ An ��mMn (s)(д) > 0

}
(4)

While this looks horrible, it simply means that Sn (s) is the set (not
multiset!) of the n-grams д ∈ An that occur in s .

For any string s ∈ A∗, we can determineMn (s) andSn (s). Given
these, we can define the n-gram histogram hn,s of s as a relation or
set of pairs

hn,s =
{ (

д,mMn (s)(д)
) ��� д ∈ Sn (s)

}
(5)

Again, this looks horrible but is nothing but a formal way of saying
that our histogram pairs every n-gram in s with the number of
times it occurs in s .

Working with Python, this view on n-gram histograms of strings
is easily implemented, too. This is because the collectionsmodule
provides the dictionary subclass Counter for counting hashable
objects. Its use is shown in function n_gram_hist in Listing 2 and
its effect is once again best understood by looking at examples.

For instance, the bi-gram histograms of two of our exemplary
strings can be produced and printed using

for s in ["homer simpson", "lenny leonard"]:

print (n_gram_hist(s, 2))

which results in
>>> Counter ({'ho': 1, 'om': 1, 'me': 1, 'er': 1,

'r ': 1, ' s': 1, 'si': 1, 'im': 1,

'mp': 1, 'ps': 1, 'so': 1, 'on': 1})

>>> Counter ({'le': 2, 'en': 1, 'nn': 1, 'ny': 1,

'y ': 1, ' l': 1, 'eo': 1, 'on': 1,

'na': 1, 'ar': 1, 'rd': 1})

Looking at these exemplary outputs, we observe that Python
counters store objects to be counted as dictionary keys and their
counts as dictionary values. Our exemplary outputs further indicate
that n_gram_hist works as intended.

2.3 Intersection String Kernels
Now that we can practically compute n-gram histograms, we can
take our second and final step towards quantifying the n-gram
similarity of two strings si and sj . Again, practice will be easier
than theory.

To begin with, we introduce the shorthand

hn,s [д] =mMn (s)(д) (6)

to denote the count of n-gram д in string s . Next, we let the set

In = Sn (si ) ∩ Sn (sj ) (7)

denote the intersection of the support sets of n-grams of si and sj .
With these definitions at hand, we then compute the function

kn
(
si , sj

)
=

∑
д∈In

min
{
hn,si [д], hn,sj [д]

}
(8)

which counts how many n-grams the two strings have in common.
To better understand the rationale behind the function or string

similarity measure in (8), we consider another example involving
simple bi-gram histograms and the following two strings

si = "lenny leonard"

sj = "hans moleman"

Both these strings contain the bi-gram д = "le". In fact, this is
the only bi-gram they share so that I2 = {"le"}. In si , "le" occurs
twice but in sj it only occurs once. Hence, hn,si [д] = 2, hn,sj [д] = 1,
andmin{2, 1} = 1. In this example, the bi-gram similarity of strings
si and sj thus amounts to 1.

(For those who are interested in even more jargon: What we are
computing in (8) is nothing but the size of the multiset intersection
ofMn (si ) andMn (sj ). But let us leave it at that . . . )

Working with Python, the computation of (8) is a again a breeze.
This is because the operator & allows for intersecting counters.
That is, we neither have to worry about computing In nor about
computing minima. For instance, to replicate parts of the example
we just went through, we may use

hi = n_gram_hist("lenny leonard", 2)

hj = n_gram_hist("hans moleman", 2)

print (hi & hj)

This results in

>>> Counter ({'le': 1})

which tells us that bi-gram "le" is shared once by our strings.
To replicate our example in full, i.e. to also sum over all the

bi-grams д ∈ I2 = S2(si ) ∩ S2(sj ), we simply use

print (sum((hi & hj). values ()))

which yields

>>> 1
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Listing 3: computing the intersection kernel of stings si , sj
def intersection_str_kernel(si, sj, n):

hi = n_gram_hist(si, n)
hj = n_gram_hist(sj, n)

return sum((hi & hj). values ())

Summarizing all these computations in a single function leads
to intersection_str_kernel as shown in Listing 3.

That is it! We now have a notion for the n-gram similarity of
two strings and may use it in language processing applications.

However, for curious readers, there may remain a lingering open
question, namely:

Q: Why have we been talking about intersection string kernels?
Or, to paraphrase a bit more technically:

Q: Why is our string similarity function in (8) called kn (·, ·) ?
Well, to be brief, this is because of the very crucial fact that

A: Our string similarity function kn (·, ·) is a Mercer kernel !
Proving this momentous claim is not that difficult but somewhat

tedious. We therefore defer this to the appendix but encourage
our readers to go through the arguments presented there. For now,
we will look at a very basic practical application of what we just
worked out.

2.4 Intersection String Kernel Matrices
In order to provide a first glimpse at what to practically do with
intersection string kernels, we next compute n ∈ {2, 5}-gram simi-
larity matrices for the 36 words in the vocabulary in Fig. 1(a).

To this end, we first of all assume that they are given in form of
a list of strings

VOC = ["bouvier patty", ..., "wiggum ralph"]

Using this list, we then compute a list of n-gram histograms.
Opting for n = 2, this can be accomplished by means of

n = 2

vocHists = [n_gram_hist(word , n) for word in VOC]

Using this list, we then compute a similarity matrix S ∈ R36×36.
Note: The following way of implementing matrix S as a list of

lists S is of course very, very bad practice! However, in this note,
we deliberately opted not to use any NumPy functionalities (just to
show that basic language processing can be done without it) . . .

m = len(VOC)

S = [[0] * m for i in range(m)]

for i, hi in enumerate(vocHists ):

for j, hj in enumerate(vocHists[i:], i):

S[i][j] = sum((hi & hj). values ())

S[j][i] = S[i][j]

If we then print the resulting lists of lists, we obtain something
as shown in Fig. 2, and, if we repeat the whole exercise with n = 5,
we obtain a result as in Fig. 3.

Note: In order to improve readability, neither figure shows the
numerous 0s contained in either similarity matrix.

What is strikingly apparent is that the 5-gram similarity matrix
is much sparser than the 5-gram similarity matrix. This was to
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Figure 2: 2-gram similarity matrix for the words in Fig. 1(a).
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Figure 3: 5-gram similarity matrix for the words in Fig. 1(a).

be expected, because, the longer an n-gram in a given word, the
less likely it reoccurs in another word. We also observe the seven
blocks or clusters along the main diagonals of both matrices. These
reflect the syntactic similarities of the names of the members of
the Bouvier, Flanders, Lovejoy, Simpson, Skinner, van Houten and
Wiggum families.

All in all, these results are rather silly. Nevertheless, they indicate
that n-gram similarities can reveal latent structures within a given
vocabulary of words. More serious and more useful applications of
n-gram similarities will be discussed in future notes.
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3 SUMMARY AND OUTLOOK
Machine learning for natural language processing is a corner stone
for tasks such as intelligent document analysis [4, 8, 10, 13, 20, 21].
Many methods in this arena require numerical vector represen-
tations of words which are currently most commonly computed
using neural networks [9, 11, 17–19]. However, light weight kernel
methods have their merits, too [3, 6, 7, 12].

In this note, we had a first look at string kernels and studied
the notion of intersection string kernels. We saw that they have
one truly appealing property, namely ease of implementation. Our
plain vanilla Python implementations for computing syntactic, i.e.
n-gram based, string similarities merely involved 8 lines of code (2
lines in Listing 1, 2 lines in Listing 2, and 4 lines in Listing 3).

Moreover, the insight that an intersection string kernel is indeed
aMercer kernel will be of practical value, too, for it allows us to
unleash everything we know about kernel machines on language
processing. We will further elaborate on this in upcoming notes
where we will study ideas such kernel PCA for word embeddings
or kernel SVMs for language disambiguation.

APPENDIX
In this appendix, we work out why and how the string similarity
function kn (si , sj ) defined in (8) is indeed a Mercer kernel. But we
best start with a disclaimer: The constructions we present next
are of purely theoretical interest. They are not meant to ever be
implemented in practice. Rather, they are intended to prove that (8)
has a hidden but important aspect to it.

To establish that kn (si , sj ) is a Mercer kernel, we will consider
n-gram histograms from the point of view we did not follow up on
in the main text of this note. That is, we will think of the n-gram
histogram hn,s of a string s over A as a discrete function

hn,s : An → N (9)

such that hn,s [д] =mMn (s)(д) and, by convention, hn,s [д] = 0 if д
is not a substring of s .

We also recall that, for a finite alphabetA of sizem, the finite size
of An ismn . This finiteness allows for a unique mapping between
the д ∈ An and the numbers r ∈ R = {1, 2, . . . ,mn } ⊂ N. For
instance, for the set of tri-grams A3 over the alphabet in (1), we
may consider the canonical assignment

aaa ↔ 1
aab ↔ 2
aac ↔ 3

...

We may then write д[i] to refer to the i-th n-gram in An . This
allows us to reconsider the n-gram histogram hn,s as a function

hn,s : R → N (10)

where hn,s [r ] = mMn (s)(д[r ]) and, by convention, hn,s [r ] = 0 if
д[r ] is not a substring of s .

Even more, since the domain R of this function is finite, we may
identify hn,s with a vector h(s) ∈ Rm

n
where

h(s) =


hn,s [1]
hn,s [2]
...

hn,s [m
n ]


(11)

Note that vectorh(s) does not need to carry a subscript n because
this piece of information is implicitly encode in its dimensionality.
Further note that we henceforth write

[v]r

to refer to the r -th entry of a vectorv .

Intersection String Kernels Are Mercer Kernels
Given what we just worked out, we observe that function kn (si , sj )
in (8) can just as well written as

kn
(
si , sj

)
=

mn∑
r=1

min
{[
hi
]
r ,
[
hj

]
r

}
(12)

where

hi = h(si ) (13)
hj = h(sj ) (14)

Now, if kn (si , sj ) was a Mercer kernel, it must also be an inner
product in some latent, i.e. typically unknown, Hilbert space H. In
other words, if kn (si , sj ) was a Mercer kernel, we must be able to
equivalently compute it as

kn
(
si , sj

)
= φ
⊺
i φ j (15)

where

φi = φ(si ) (16)
φ j = φ(sj ) (17)

and φ : A∗ → H is an appropriate feature map that takes strings
in A∗ to vectors in H.

Our problem at this point is thus find such a feature map. That
is, to prove that kn (si , sj ) is a Mercer kernel, we need prove that
there exists at least one function φ : A∗ → H such that (12) can
equivalently be written as (15).

Looking at the systems of equations in (12)–(14) and (15)–(17),
their structures appear encouragingly similar. That is, it does not
seem impossible to establish a connection between them.

The main difficulty is that the right hand side of (12) involves
non-linear functions (min) and therefore does not constitute an
inner product. (If it did, our job was already done because we could
simply let φ(s) = h(s).)

However, the entries [h(s)]r of the histogram vector h(s) are
special in that they are counting numbers. And counting numbers
can be represented using the following (not really practical but

https://en.wikipedia.org/wiki/Mercer%27s_theorem
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theoretically useful) bit-string format

0 = 0
1 = 1
2 = 11
3 = 111
4 = 1111
...

That is, we can represent each [h(s)]r of h(s) either as a zero or as
a sequence of ones.

To let all such sequences be of the same length, we may right-pad
them with an appropriate amount of 0s. To this end, we note that a
string of length l contains l−n+1 contiguous substrings or n-grams.
Hence, we can identify each [h(s)]r with a binary vector

zr (s) =
[ l︷                          ︸︸                          ︷
1 1 1 · · · 1 1︸        ︷︷        ︸

[h(s)]r

0 0 0 · · · 0 0
]

(18)

because[
h(s)

]
r =

l∑
q=1

[
zr (s)

]
q (19)

However, if we do this for two strings si and sj , their lengths
li and lj may differ. A remedy is to consider a maximum length L
longer than the length of any string we will ever encounter. For the
point we are making here, the exact choice of L does not matter,
it is really but a theoretical construct. When in doubt, we could
chose it to be a ridiculously large number such as, say, L = 1080, the
number of atoms in the known universe. Assuming an appropriate
L, we can represent each [h(s)]r as

zr (s) =
[ L︷                                               ︸︸                                               ︷
1 1 1 · · · 1 1︸        ︷︷        ︸

[h(s)]r

0 0 0 0 0 0 0 0 0 0 0 · · · 0 0
]

(20)

Next, we observe the following very peculiar property of binary
numbers x ,y ∈ {0, 1}, namely

min
{
x ,y

}
= x · y (21)

Just because of this special property of binaries, we can now
actually write

min
{[
h(si )

]
r ,
[
h(sj )

]
r

}
= min


L∑

q=1

[
zr (si )

]
q ,

L∑
q=1

[
zr (sj )

]
q


=

L∑
q=1

min
{[
zr (si )

]
q ,

[
zr (sj )

]
q

}
=

L∑
q=1

[
zr (si )

]
q ·

[
zr (sj )

]
q

= zr (si )
⊺zr (sj ) (22)

But this is finally to say that, if we consider a truly humongous
vector φ(s) ∈ RL ·m

n
with

φ(s) =


z1(s)
z2(s)
...

zmn (s)


(23)

we have found a feature vector representation φ(s) of a string s
which allows us to write our n-gram similarity function as

kn
(
si , sj

)
=

mn∑
r=1

min
{[
hi
]
r ,
[
hj

]
r

}
= φ
⊺
i φ j (24)

This concludes our discussion because it establishes that kn (si , sj )
is indeed a Mercer kernel.
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