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ABSTRACT
Ojas’ rule for neural principal component learning has a continuous

analog called the Oja flow. This is a gradient flow on the unit sphere

whose equilibrium points indicate the principal eigenspace of the

training data. We briefly discuss characteristics of this flow and

show how to solve its differential equation using SciPy.

1 INTRODUCTION
Previously [3], we studied Oja’s rule which extends Hebb’s rule
for how a single neuron adjusts its synaptic weights in an unsuper-

vised manner. Oja’s rule is celebrated for the fact that it causes the

weight vector of a linear neuron to converge to the first principal

component of its training data. In other words, if we consider a

linear neuron with weightsw which, for a given input x , computes

y = w⊺x and let this neuron learn according to Oja’s rule, we

observe the following:

If we assume a zero mean sample of n training data points x j , we
may think of them as the columns of a data matrix

X =
[
x1 x2 · · ·xn

]
(1)

and thus compute the sample covariance matrix as

C = 1

n XX⊺
(2)

The expected weight update in the k-th iteration of learning under

Oja’s rule then amounts to

∆wk = Cwk −wkw
⊺
kCwk (3)

and, if the initial weight vectorw0 was of unit length, i.e. ∥w0∥ = 1,

the discrete iterative process

wk+1 = wk + η · ∆wk (4)

with learning rate η > 0 will converge to the dominant eigenvector

u1 of matrixC which spans the principal eigenspace of the data in

matrix X .

In this note, we are concerned with a continuous generalization

of the iteration in (3), the so called single-unit Oja flow [20].

In section 2, we derive the corresponding ordinary differential

equation from the above finite difference scheme and briefly dis-

cuss important properties of the Oja flow. Then, in section 3, we

numerically solve the corresponding initial value problem using

methods in SciPy’s integrate package. Readers who would like

to experiment with our exemplary code should be familiar with

NumPy and SciPy [15] and only need to

import numpy as np

import numpy.linalg as la

from scipy.integrate import odeint
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Figure 1: A sample of 3D data points X = [x1 x2 · · ·xn ] (grey
dots) and the dominant eigenvectoru1 (orange arrow) of the
sample covariancematrixC. Observe thatu1 spans themajor
principal axis of the data in X .

2 THEORY
This section explains what it means to say that Oja’s rule has a

continuous analog. That is, we show that (4) is but a finite difference

approximation of a vector-valued ordinary differential equation.

To begin with, we note that plugging (3) into (4) followed by

some simple algebra yields

wk+1 −wk
η

= Cwk −wkw
⊺
kCwk (5)

Given this expression, we next introduce a new parameter t = k η
so that t +η = k η+η = (k + 1)η. If we then assume thatw(t) = wk ,

we havew(t + η) = wk+1 and can write (5) as

w(t + η) −w(t)

η
= Cw(t) −w(t)w(t)⊺Cw(t) (6)

At this point, it is pretty obvious where we are headed, because,

in the limit η → 0, the expression in (6) becomes

d
dtw(t) = Cw(t) −w(t)w(t)⊺Cw(t) (7)

This is indeed an ordinary differential equation or a continuous

time dynamical system and we can think of Oja’s rule in (4) as the

forward Euler method for solving (7).

https://en.wikipedia.org/wiki/Oja%27s_rule
https://en.wikipedia.org/wiki/Hebbian_theory
https://orcid.org/0000-0001-6615-2128
https://orcid.org/0000-0001-6615-2128
https://en.wikipedia.org/wiki/Euler_method
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NOTE: in order to reduce notational clutter, we will henceforth

(mostly) drop the dependency on parameter t and simply write

dw

dt
= Cw −ww⊺Cw (8)

For reasons that will become apparent soon, the process in (8) is

called the (single unit) Oja flow and we emphasize that there are

different ways of writing it down. In particular, we have

dw

dt
= Cw −

(
ww⊺)Cw (9)

=
(
I −ww⊺)Cw (10)

as well as

dw

dt
= Cw −w

(
w⊺Cw

)
(11)

= Cw −
(
w⊺Cw

)
w (12)

=
(
C −w⊺CwI

)
w (13)

Unfortunately, it is a bit involved to prove the existence of asymp-

totically stable equilibrium points of (8) or the (speed of) conver-

gence of w(t) to one of these equlibria. Readers interested in a

rigorous treatment of these issues are referred to a marvelous paper

by Yan, Helmke, and Moore. They show that, the Oja flow con-

verges exponentially fast to an equilibrium from any initial value

w(0) and that this equilibrium indicates the dominant eigenvector

ofC for almost all initial values [20].
However, other important properties of the Oja flow are more

easy to establish and we will discuss them next.

First of all, if we assume that the dynamical system in (8) has

converged to an equilibriumw for which

dw

dt
= 0 (14)

we then have for this equilibrium that

Cw =
(
w⊺Cw

)
w (15)

Now, since w⊺Cw is but a scalar, we may give it a name, say, λ.
This way, we findCw = λw which we immediately recognize as an

eigenvalue / eigenvector equation. But this establishes

Lemma 2.1. If the Oja flow converges to an equilibrium point, this
equilibrium point corresponds to an eigenvector of matrixC .

Second of all, one can show that, if the Oja flow starts in an

arbitrary point on the unit sphere, it will evolve on the unit sphere.

Indeed, in the appendix, we prove the following

Lemma 2.2. If the Oja flow starts in w(0) with ∥w(0)∥ = 1, the
flow is isometric, i.e. ∥w(t)∥ = 1 for all t ≥ 0.

In light of Lemma 2.1 this is to say that, if the Oja flow starts with

a unit vector, the vector it converges to will be a unit eigenvector

of matrixC .
Third of all, it is easy to see why the Oja flow is said to be a flow

because, as shown in the appendix, we have

Lemma 2.3. The Oja flow is a gradient flow.

In order to unpack this statement, we briefly recall the notion

of a gradient flow: Given a vector space V and a smooth function

f : V → R, a gradient flow is a smooth curve x : R→ V , t 7→ x(t)

such that
d
dt x(t) = −∇f

(
x(t)

)
.

Listing 1: Numerically integrating, i.e. solving, the Oja flow
1 def integrateOjaFlow(matX , tmax=4, nsteps =101):
2

3 def derivative(w, t, C, I):
4 return (I - np.outer(w, w)) @ C @ w
5

6 m, n = matX.shape
7

8 matI = np.eye(m)
9 matC = np.cov(matX)
10

11 vecW0 = np.ones(m) / np.sqrt(m)
12 steps = np.linspace(0, tmax , nsteps)
13

14 matW = odeint(derivative , vecW0 , steps , args=(matC , matI))
15

16 return matW

With respect to the claim in Lemma 2.3, this is to say that there

must exist a function f
(
w(t)

)
such that

dw

dt
= −∇f (w) (16)

which is interesting because it tells us that Oja’s rule in (4) is nothing

but a gradient descent scheme.

3 PRACTICAL COMPUTATION
Having discussed theoretical properties of the Oja flow, the obvi-

ous question is, if we could actually use it to compute principal

components of a data sample?

In what follows, we will work with the expression in (10) which,

including the the dependency on time t , reads

d
dtw(t) =

(
I −w(t)w(t)⊺

)
Cw(t) (17)

Scrutinizing this expression, we realize that solving the Oja flow

means to compute

w(t) =

∫ t

0

(
I −w(τ )w(τ )⊺

)
Cw(τ )dτ (18)

which begs the question of how to solve the integral on the right?

The strategy we adhere to in the following is to use numerical

integration. To this end, we will resort to function odeint which is

available in SciPy’s integrate module.
1

Listing 1 shows a function integrateOjaFlow which illustrates

the use of odeint for our purpose. Function integrateOjaFlow is
called with three parameters matX, tmax, and nsteps.

Parameter matX is a 2D NumPy array that represents the data

matrix X in (1); the roles of the other two parameters will become

clear shortly.

At the beginning of integrateOjaFlow (in lines 3 and 4), we

define a function derivative whose role, too, will become clear

shortly. For now, we already note that it suspiciously looks like an

implementation of the equation of the Oja flow in (10).

In line 6, we determine the size of X . The numberm of its rows

is then used to initialize an array matI which represents them ×m

1NOTE: odeint is now considered a legacy function and users of the latest versions of

SciPy are encouraged to work with solve_ivp instead. This function, too, is found in

the integrate module. However, its API has undergone some changes over the past

couple of SciPy releases so that discussing its use would entail the risk that readers

working with slightly older SciPy versions could not run our code. Hence, we stick

with “good old” odeint.

https://en.wikipedia.org/wiki/Vector_field#gradient_flow
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identity matrix I and line 9 computes an array matC which repre-

sents the sample covariance matrixC in (2).

Next, in line 11, we initialize a 1D array vecW0 which represents

anm-dimensional unit vectorw(0) = w0 that indicates (an arbitrary

choice of) the initial value of the Oja flow at time t = 0.

If we make use of odeint to numerically integrate a differential

equation, we need to specify a sequence of time steps for which to

solve the equation. Hence, in line 12, we initialize an array steps of
such time steps. The initial point of the sequence is 0, the last point
of the sequence is given by the parameter tmax and the number

of point in between is given by the parameter nsteps. These are
the two additional parameters passed to integrateOjaFlow and

we opted to set their default values to 4 and 101, respectively.

Given all these preparations, we can now invoke odeint to solve
the Oja flow. This happens in line 14 and we note that, out of

the many parameters of odeint, the following ones are of major

interest for our current setting:

• the 1st required parameter is a callable object, i.e. a function

that computes the differential equation we wish to solve;

here we set it to derivative, i.e. the function we defined in

lines 3 and 4; we already said that it is an immediate NumPy
implementation of the differential equation in (10); we also

point out that its parameter t does not occur in its body but

odeint requires it to be present; finally, we note that the

order in which parameters w and t occur in the definition of

derivative may seem strange but is another requirement

of odeint
• the 2nd required parameter represent the initial condition

of the differential equation to be solved; hence, we pass the

array vecW0 which we initialized above

• the 3rd mandatory parameter represents the time points at

which to solve the differential equation under consideration;

here, we therefore pass the array steps
• args is an optional parameter that is only required if the

function passed in the first argument has additional param-

eters (other than w and t); in our case it has, namely matC
and matI and so we pass them in a tuple

Used like this, odeint produces an array of shape (nsteps, m)
which we store in matW and finally return it as the result of function

integrateOjaFlow.
Hence, if we are given a 2D array matXwhich represents anm×n

data matrix X , we may use

matW = integrateOjaFlow(matX)

to obtain an array whose rows represent the states of the Oja flow

at the nsteps time points between 0 and tmax. If tmax is large

enough, the last row matW[-1] of array matW represents a vector
w(tmax) that corresponds to a stable equilibrium of the flow. For

instance, for the 3D data points in Fig. 1, we find

print (matW [-1])

>>> [ -0.79887118 0.50321141 0.32951953]

In order to compare this result to eigenvector u1 of the sam-

ple covariance matrix that would be computed by standard linear

algebra routines, we recall our discussion in [2] and use

matC = np.cov(matX)

vecL , matU = la.eigh(matC)

0 1 2 3 4
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Figure 2: Visualization of an Oja flow computed for the 3D
data in Fig. 1. The initial valuewas the unit vectorw(0) = 1/

√
3

and the figure shows how the components w1(t), w2(t), and
w3(t) ofw(t) evolve over time. In accordance with theoretical
expectations [20], the flow quickly reaches a stable point.

in order to obtain an array

vecU1 = matU[:,-1]

which we then inspect as follows

print (vecU1)

>>> [ -0.7988784 0.50319912 0.32952077]

The minute differences between this result and the outcome of our

Oja flow computation can be attributed to numerical imprecision.

All in all, our example corroborates the theoretical expectation that

the Oja flow converges almost surely to the principal eigenspace of

the given data sample [20].

4 CONCLUSION
In this note, we saw that the problem of computing the principal

component of a set of data points can be cast as the problem of

solving an ordinary differential equation called the Oja flow.

While this is an interesting theoretical result, one may wonder

if it provides immediate practical benefits? At this point in time,

the answer is a sounding NO, BUT . . .

On the one hand, we saw that numerical integration methods

can solve the Oja flow. But when it comes to computational effi-

ciency, these cannot compete with high performance linear algebra

routines for eigenvalue / eigenvector computation. Such routines

are implemented in the LAPACK library [1] which is linked by

NumPy / SciPy and we already discussed how to apply their cor-

responding methods [2]. In this sense, dynamical system models for

eigenvalue / eigenvector problems are of little use when working

with conventional digital computers.

On the other hand, we are currentlywitnessing the (re)emergence

of next generation computing devices which transcend certain lim-

itations of digital computers. Indeed, it has been known for long

that analog computers (as well as special purpose VLSI circuits)

can solve differential equations [8, 17]. Since there have been in-

teresting developments in this area [7, 9, 11, 18], the Oja flow may

become of practical vlaue. There has also been substantial technical

progress in quantum computing and quantum computers, too, can

solve differential equations [6, 10, 12, 14]. As they offer exponential

advantages over classical computers, this, too, may lead to practical

applications of the Oja flow.
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In short, since eigenvector computation plays a fundamental

role in intelligent data analysis
2
, and since the Oja flow allows for

computing eigenvectors in a manner that suites next generation

computing devices, it may soon take on a much bigger role than it

has been playing so far.

A APPENDIX
In the following, we provide the still outstanding proofs of Lemma

2.2 and 2.3. To begin with, we reiterate that we are concerned with a

zero mean sample gathered in a data matrixX =
[
x1 x2 · · ·xn

]
and

that the sample covariance matrix can be computed asC = 1

n XX⊺
.

Also, for notational convenience, we will switch from the Leibniz

notation to Newton’s notation for temporal derivatives and write

the Oja flow as

Ûw =
(
I −ww⊺)Cw

Having recalled our basic assumptions and common notational

conventions, we can proceed and provide the

Proof of Lemma 2.3. All we need to do to show that the Oja

flow is a gradient flow, is to find a function f (w) such that

Ûw =
(
I −ww⊺)Cw = −∇f (w)

To make a rather long story short, we will consider an inspired

ansatz, namely

h(w) =


(I −ww⊺) X

2

(19)

Writing this squared Frobenius term in terms of a trace, we have

(I −ww⊺) X

2 = tr

[( (
I −ww⊺) X ) ( (

I −ww⊺) X )⊺]
= tr

[ (
I −ww⊺) XX⊺ (I −ww⊺)⊺]

= tr

[ (
I −ww⊺) XX⊺ (I −ww⊺) ]

where the last step is possible because matrix I −ww⊺
is symmetric.

Given this result, we next consider a slightly modified function,

namely

д(w) = 1

n h(w) = 1

n tr

[ (
I −ww⊺) XX⊺ (I −ww⊺) ]

= tr

[ (
I −ww⊺) 1

n XX⊺ (I −ww⊺) ]
= tr

[ (
I −ww⊺)C (

I −ww⊺) ]
Next, we consider the gradient of д(w) and note that, if we want

to compute

∇д =
dд

dw

we must pay attention to the fact that д is a function of the form

д(w) = tr

[
M(w)C M(w)

]
. In other words, we have to invoke the

chain rule

dд

dw
=

dд

dM
·
dM

dw

2
Here are but a few examples from our own work which illustrate the wide range of

practical applications: [4, 5, 13, 19].

Tomake another long story short
3
, the sought after gradient amounts

to

dд

dw
= 2

( (
I −ww⊺)C) · (−2)w = −4

(
I −ww⊺

)
Cw

But this is finally to say that, if we introduce yet another slightly

modified function, namely

f (w) = 1

4
д(w)

there does indeed exist a function such that

Ûw =
(
I −ww⊺)Cw = −∇f (w)

□

Having proved the crucial Lemma 2.3 and seen the techniques

this involved, it is now easy to provide the following simple

Proof of Lemma 2.2. To show that the Oja flow is isometric

when started with a vectorw where ∥w ∥ = 1, we need to show that

the length ofw is an invariant of the process

Ûw =
(
I −ww⊺)Cw

To this end, we consider the temporal derivative of the function

L(w) = ∥w ∥2 = w⊺w (20)

and find

dL

dt
=

dL

dw

dw

dt
= 2w⊺ Ûw

= 2w⊺ (I −ww⊺)Cw

= 2w⊺Cw − 2w⊺ww⊺Cw

Since we assumed thatw is a unit vector for whichw⊺w = 1, this

expression further simplifies to

dL

dt
= 2w⊺Cw − 2w⊺Cw = 0

In other words, ifw is a unit vector that evolves under the Oja

flow, its direction may change over time but its length will not. □
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