
ML2R Coding Nuggets
Sorting as a QUBO

Christian Bauckhage∗
Machine Learning Rhine-Ruhr

Fraunhofer IAIS
St. Augustin, Germany

Pascal Welke†
Machine Learning Rhine-Ruhr

University of Bonn
Bonn, Germany

ABSTRACT
Having previously considered sorting as a linear programming
problem, we now cast it as a quadratic unconstrained binary opti-
mization problem (QUBO). Deriving this formulation is a bit cum-
bersome but it allows for implementing neural networks or even
quantum computing algorithms that sort. Here, however, we con-
sider a simple greedy QUBO solver and implement it using NumPy.

1 INTRODUCTION
Previously [2], we saw how to express the problem of sorting the
elements xi of an n-dimensional, real-valued vector

x = [x1,x2, . . . ,xn ]
⊺ (1)

as a linear programming problem. Our approach was to understand
sorting as the problem of estimating an n×n permutationmatrix
P such that the elements yi of the permuted vector

y = Px (2)

obey yi ≤ yi+1. To devise an objective function whose minimizer
corresponds to the sought after permutation matrix, we made use
of the rearrangement inequality. Given the following auxiliary
n-dimensional vector

n = [1, 2, . . . ,n]⊺ (3)

this inequality implies that the expression −n⊺y is minimal, if
yi ≤ yi+1. We also recalled that the n × n permutation matrices
form the vertices of the Birkhoff polytope

Bn =
{
M ∈ Rn×n

�� M ⪰ 0 ∧M1 = 1 ∧M⊺1 = 1
}

(4)

of doubly stochastic matrices and therefore found that sorting is to
solve

P = argmin
M ∈Rn×n

− n⊺M x

s.t.

M ⪰ 0
M1 = 1

M⊺1 = 1

(5)

In this note, we will assume an even more abstract point of
view on sorting and cast it as a quadratic unconstrained binary
optimization problem (QUBO).

Why would we do this? Would it have practical advantages?
No, at least not on commodity hardware! QUBOs are notoriously
difficult to solve and, w.r.t. computational efficiency, QUBO solvers
cannot compete with conventional sorting algorithms.
∗ 0000-0001-6615-2128
† 0000-0002-2123-3781

However, the fact that we can cast the sorting problem as a QUBO
means that we can solve it using Hopfield networks. This, in turn,
establishes that sorting can be done on next generation computing
devices such as neuromorphic computers or quantum computers.
This note therefore demonstrates how we might “rethink” familiar
problems to then be able to solve them on emerging platforms.

Based on the linear program in (5), we next derive a QUBO
formulation of the sorting problem (section 2). Since sorting is not
a difficult problem, our QUBO is rather well behaved and can be
solved using a greedy optimization algorithm which we implement
in NumPy (section 3). Readers who would like to experiment with
our code should be familiar with NumPy and SciPy [10] and only
need to

import numpy as np

import numpy.random as rnd

2 THEORY
Our discussion in this section is split into two major parts: we
first derive a QUBO for sorting and then consider a simple (albeit
inefficient) algorithms that solves our QUBO.

2.1 A Formulation of Sorting as a QUBO
Looking at (5), we quickly realize that we can rewrite this linear
programming problem in terms of an integer programming problem
over binary matrices Z ∈ {0, 1}n×n . After all, permutation matrices
are but binary matrices with a single 1 in each of their rows and
columns. In other words, the problem in (5) is equivalent to

P = argmin
Z ∈{0,1}n×n

− n⊺Z x

s.t.
Z1 = 1

Z⊺1 = 1

(6)

Since (6) only searches over binary and thus non-negative matrices,
we have dropped the non-negativity constraint. Regarding the two
sum-to-one constraints, we note that they force the sought after
binary matrix to have exactly one 1 per row and column. In other
words, any feasible minimizer of (6) will be a permutation matrix.

Similar to what we did in [2], we will henceforth work with the
transpose −x⊺Z⊺n of the objective function in (6). We also recall
from [2] that we can write

Z⊺n = N z (7)

https://en.wikipedia.org/wiki/Permutation_matrix
https://en.wikipedia.org/wiki/Rearrangement_inequality
https://en.wikipedia.org/wiki/Birkhoff_polytope
https://orcid.org/0000-0001-6615-2128
https://orcid.org/0000-0001-6615-2128
https://orcid.org/0000-0002-2123-3781
https://orcid.org/0000-0002-2123-3781


C. Bauckhage and P. Welke

where z ∈ {0, 1}n
2
and N ∈ Rn×n

2
are given by

z = vec (Z ) (8)
N = I ⊗ n⊺ (9)

and I and ⊗ denote the n × n identity matrix and the Kronecker
product. Similar arguments apply to the expressions in the two
constraints in (6). That is, we further have

Z1 = Cr z (10)
Z⊺1 = Cc z (11)

where the two n × n2 matricesCr andCc on the right are given by

Cr = 1⊺ ⊗ I (12)
Cc = I ⊗ 1⊺ (13)

Consequently, we can rephrase the problem of estimating an
optimal permutation matrix as the problem of finding an optimal
binary vector, namely

z∗ = argmin
z ∈{0,1}n2

− x⊺N z

s.t.
Crz = 1
Ccz = 1

(14)

Once this problem has been solved, the sought after permutation
matrix can be computed as P = mat(z∗) to then obtain the sorted
version y = Px of x .

Now, to turn the linear constrained binary problem in (14) into
a quadratic unconstrained binary problem, we first of all note the
following implications

Crz = 1 ⇔


Crz − 1



2 = 0 (15)

Ccz = 1 ⇔


Ccz − 1



2 = 0 (16)

Second of all, we expand the two Euclidean distances as

Crz − 1


2 = z⊺C⊺

r Crz − 2 1⊺Crz + 1⊺1 (17)

Ccz − 1


2 = z⊺C⊺

c Ccz − 2 1⊺Ccz + 1⊺1 (18)

Since 1⊺1 = n is a constant independent of z, we therefore have
the following Lagrangian for the minimization problem in (14)

L
(
z, λr , λc

)
= − x⊺N z

+ λr
(
z⊺C⊺

r Crz − 2 1⊺Crz
)

+ λc
(
z⊺C⊺

c Ccz − 2 1⊺Ccz
)

(19)

=z⊺
(
λr C

⊺
r Cr + λc C

⊺
c Cc

)
z

−

(
x⊺N + 2 1⊺

(
λr Cr + λc Cc

) )⊺
z (20)

≡z⊺R z − r⊺z (21)

Here, λr and λc are two Lagrange multipliers which we henceforth
treat as parameters that have to be set manually.

But all of this is to say that the linear programming problem in
(14) can just as well be cast as a quadratic unconstrained binary
optimization problem, namely

z∗ = argmin
z ∈{0,1}n2

z⊺R z − r⊺z (22)

Again, if we could solve this QUBO for z∗, the actually sought
after permutation matrix would be P = mat(z∗) and would allow
us to obtain the sorted version y = Px of x .

2.2 A Greedy Solution Algorithm
Our sorting QUBO in (22) constitutes a discrete optimization
problem. Its decision variable z ∈ {0, 1}n

2
is a binary vector whose

entries do not vary continuously. Optimization techniques based on
calculus do therefore not immediately apply1. In fact, since we are
searching the set of all 2n

2
binary vectors for an optimal z∗, we have

turned sorting into a combinatorial optimization problem. In
general, these are difficult to solve.

However, due to the specific structure of its ingredients R and
r , our QUBO in (22) is rather well behaved. Though we will not
prove it here, this is to say that any local minimum of its objective
function also is a global minimum. Next, we will exploit this to
devise a simple greedy algorithm for solving (22).

To begin with, we note that it is common to call the objective in
(22) an energy function. We henceforth follow this convention and
refer to

E(z) = z⊺R z − r⊺z (23)

as the energy of z.
Second of all, since z is an n2-dimensional binary vector, we

may think of its entries zi as bits. Now, assume we were given any
solution candidate z. We could compute its energy E(z) and then
ask which of its bits zi should be flipped (i.e. set to ¬zi ) in order
to maximally decrease the current energy and thus to maximally
improve the current solution.

Note that this idea is computationally expensive as it requires n2
individual evaluations of the energy function in (23). Nevertheless,
we can use it to iteratively update an initial guess of the solution
until no further decrease in energy is possible.

Third of all, in order to slightly improve on the overall runtime
of this search procedure, we recall that, for z to be a valid solution
of (22), only n of its bits can be active (i.e. in state 1). If we thus
were to start our search for the solution with the vector of all 0s,
we could iteratively activate optimally chosen bits until the number
of active bits equals n.

In short, solving the sorting QUBO in (22) can be accomplished
using the following greedy optimization algorithm:

Algorithm 1 greedy search for a solution to (22)
initialize z = 0
initialize E = 0

while
∑
i zi < n do

for i = 1, . . . ,n2 do
Ei = E

(
z1, . . . ,¬zi , . . . , zn2

)
a = argmini Ei
za = ¬za

1In an upcoming Coding Nugget, we will study a clever way of making them applicable.

https://en.wikipedia.org/wiki/Discrete_optimization
https://en.wikipedia.org/wiki/Discrete_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization


Sorting as a QUBO

Listing 1: setting up the QUBO in (22)
1 def initializeSortQUBO(vecX , lr=None , lc=None):
2 n = len(vecX)
3
4 vecN = np.arange(n) + 1
5
6 matI = np.eye(n)
7 vec1 = np.ones(n)
8
9 matN = np.kron(matI , vecN)
10 matCr = np.kron(vec1 , matI)
11 matCc = np.kron(matI , vec1)
12
13 if lr is None or lc is None:
14 vecX = vecX / np.sum(vecX)
15 lr = lc = n
16
17 matR = lr * matCr.T @ matCr + lc * matCc.T @ matCc
18 vecR = vecX @ matN + 2 * vec1 @ (lr * matCr + lc * matCc)
19
20 return matR , vecR

3 PRACTICE
Next, we look at how to implement the greedy procedure in Alg. 1
in order to solve the QUBO in (22) and thus to sort the entries of a
vector x ∈ Rn .

To work with a practical example, we first create a random vector
x of, say, n = 5 entries 0 ≤ xi ≤ 100 which we represent as a one-
dimensional NumPy array vecX. To keep things legible, we will
force the xi to be integers and proceed as follows

n = 5

vecX = rnd.randint (100, size=n)

In order to inspect the entries of this random vector, we simply use

print (vecX)

and may obtain something like this

[46 52 12 10 51]

Given x , we next initialize the parameters R and r of our QUBO.
To this end, we apply

matR , vecR = initializeSortQUBO(vecX)

and thus use function initializeSortQUBO in Listing 1. Its three
parameters are the array vecX we just created and two scalars lr
and lc which represent the multipliers λr and λc in (19)–(21). The
latter can be set by the user, however, we choose their default values
to be None and shortly explain why.

Within initializeSortQUBO, lines 2–11 repeat ideas we already
discussed in [2]: Arrays matI and vec1 represent the n × n identity
matrix and then-dimensional vector of all ones, respectively. Arrays
matN, matCr, and matCc implement the matrices N , Cr , and Cc
whichwe defined in equations (9), (12), and (13). In order to compute
these arrays, we apply the NumPy function kron which realizes the
Kronecker product.

Lines 13–15 address the crucial open question of how to set the
two Lagrange multipliers λr and λc which parameterize R and r . To
make a long story short, their optimal choice depends on (the size
of the entries xi of) the vector x we want to sort. As a workaround
of this issue, the default behavior of our code is to normalize x to
have an L1 norm of 1 and then to set both λr and λc to n.

Listing 2: greedily solving the QUBO in (22)
1 def energy(vecZ , matR , vecR):
2 return vecZ @ matR @ vecZ - vecR @ vecZ
3
4
5 def flipZi(vecZ , i):
6 vecZ[i] = 1 - vecZ[i]; return vecZ
7
8
9 def solveSortQUBO(matR , vecR):
10 n2 = len(vecR)
11 n = np.sqrt(n2)
12
13 vecZ = np.zeros(n2)
14 enrg = np.zeros(n2)
15
16 while np.sum(vecZ) < n:
17 for i in range(n2):
18 enrg[i] = energy(flipZi(np.copy(vecZ), i), matR , vecR)
19
20 a = np.argmin(enrg)
21
22 vecZ = flipZi(vecZ , a)
23
24 return vecZ

Finally, lines 17 and 18 compute two arrays matR and vecRwhich
represent matrix R and vector r ; these computations are nothing
but direct implementations of the respective terms in equation (20).

Having initialized matR and vecR, we next call

vecZ = solveSortQUBO(matR , vecR)

to determine the solution z∗ of our sorting QUBO. That is, we use
function solveSortQUBO in Listing 2.

This function is a straightforward NumPy implementation2 of
Alg. 1: Line 13 initializes an all zeros array vecZ which represents
the binary vector z which we will refine iteratively. Line 14 ini-
tializes an array enrg in which we store the intermediate energy
values Ei required by our algorithm.

The while-loop in line 16 simply realizes thewhile-loop in Alg. 1.
The for-loop in line 17 iterates over the n2 entries of z. In each

iteration, we create a copy of the current instance of array vecZ
(using np.copy(vecZ)); in this copy, we flip the i-th entry (using
function flipZi), compute the corresponding energy (using func-
tion energy), and store the result in enrg[i]. Once this loop has
terminated, line 20 determines the index of the smallest entry of
enrg and line 22 activates the corresponding entry of vecZ.

Having thus obtained the solution vecZ to our QUBO, we next
turn it into the required permutation matrix P . This is as simple as

matP = vecZ.reshape(n,n).T

For our running example, the resulting array matP turns out to be

[[0. 0. 0. 1. 0.]

[0. 0. 1. 0. 0.]

[1. 0. 0. 0. 0.]

[0. 0. 0. 0. 1.]

[0. 1. 0. 0. 0.]]

And, to verify that this permutation matrix does indeed solve our
exemplary problem, we use

2Note, however, that we sacrifice efficiency for readability. Readers are encouraged to
try to tweak our implementation towards better performance (for instance, by cleverly
avoiding costly copy operations).



C. Bauckhage and P. Welke

print ('vecX = ', vecX.astype(float))

print ('vecY = ', matP @ vecX)

which yields
vecX = [46. 52. 12. 10. 51.]

vecY = [10. 12. 46. 51. 52.]

Success! We have solved a QUBO to obtain a sorted versiony = Px
of an unordered vector x .

NOTE:While our example illustrates that sorting can be done
by solving a QUBO, this is really not a good idea when working
with conventional computers. Even for moderate problem sizes n,
the above approach becomes unbearably slow. Readers can see this
for themselves by trying to sort a vector x of, say, n = 50 elements.
However, those with access to adiabatic quantum computers [5] or
digital annealers [3, 7, 8] might find our formulation of the sorting
problem much more appealing.

4 SUMMARY AND OUTLOOK
In this note, we saw how to cast the sorting problem as a quadratic
unconstrained binary optimization problem (QUBO) and presented
a greedy search procedure for its solution.

Yet, from the point of view of computational efficiency, we can-
not recommend the above approach since it is much slower than
conventional sorting algorithms. At the same time, the problem
formulation and solution we presented here are not thet smartest
ways of thinking about sorting as a QUBO. Indeed, (22) can be
further rewritten and then be solved using Hopfield nets that work
in an informed manner [1, 11].

Moreover, the additional rewrite will also allow for quantum
sorting. This, too, is not really remarkable because sorting is not
the kind of problem that requires heavy machinery. However, the
modeling approach we sketched in this note points to new solutions
for much more demanding permutation problems [4, 6, 9, 12] and
we will substantiate this claim in later notes.

ACKNOWLEDGMENTS
This material was produced within the Competence Center for
Machine Learning Rhine-Ruhr (ML2R) which is funded by the
Federal Ministry of Education and Research of Germany (grant no.
01|S18038C). The authors gratefully acknowledge this support.

REFERENCES
[1] C. Bauckhage, R. Sanchez, and R. Sifa. 2020. Problem Solving with Hopfield

Networks and Adiabatic Quantum Computing. In Proc. IJCNN. IEEE.
[2] C. Bauckhage and P. Welke. 2021. ML2R Coding Nuggets: Sorting as Linear

Programming. Technical Report. MLAI, University of Bonn.
[3] J. Boyd. 2018. Silicon Chip Delivers Quantum Speeds. IEEE Spectrum 55, 7 (2018).
[4] G.D. Evangelidis and C. Bauckhage. 2013. Efficient Subframe Video Alignment

Using Short Descriptors. IEEE Trans. Pattern Analysis and Machine Intelligence
35, 10 (2013).

[5] M. Johnson and et al. 2011. QuantumAnnealing with Manufactured Spins. Nature
473, 7346 (2011).

[6] J. Kunegis, D. Fay, and C. Bauckhage. 2010. Network Growth and the Spectral
Evolution Model. In Proc. CIKM. ACM.

[7] S. Mücke, N. Piatkowski, and K. Morik. 2019. Hardware Acceleration of Machine
Learning Beyond Linear Algebra. In Proc. ECML/PKDD.

[8] S. Mücke, N. Piatkowski, and K. Morik. 2019. Learning Bit by Bit: Extracting the
Essence of Machine Learning. In Proc. LWDA.

[9] A. Nowak, S. Villar, A.S. Bandeira, and J. Bruna. 2017. Revised Note on
Learning Algorithms for Quadratic Assignment with Graph Neural Networks.
arXiv:1706.07450 [stat.ML] (2017).

[10] T.E. Oliphant. 2007. Python for Scientific Computing. Computing in Science &
Engineering 9, 3 (2007).

[11] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch,
J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak, J. Garcke, C. Bauckhage, and
J. Schuecker. 2019. Informed Machine Learning – A Taxonomy and Survey of
Integrating Knowledge into Learning Systems. arXiv:1903.12394 [stat.ML] (2019).

[12] M.M. Zavlanos and G. J. Pappas. 2008. A Dynamical Systems Approach to
Weighted Graph Matching. Automatica 44, 11 (2008).

https://www.ml2r.de

	Abstract
	1 Introduction
	2 Theory
	2.1 A Formulation of Sorting as a QUBO
	2.2 A Greedy Solution Algorithm

	3 Practice
	4 Summary and Outlook
	References

