
Coding Nuggets
Faster QUBO Brute-Force Solving

Sascha Mücke∗
Lamarr Institute

TU Dortmund University
Dortmund, Germany

ABSTRACT
This article describes an improved brute-force solving strategy for
Quadratic Unconstrained Binary Optimization (QUBO) problems
that is faster than naive approaches and easily parallelizable. The
implementation in Python is discussed in detail, and an additional
C implementation is provided.

1 INTRODUCTION
Quadratic Unconstrained Binary Optimization (QUBO) is the prob-
lem of finding a binary vector 𝒙∗ ∈ {0, 1}𝑛 that minimizes the
function

𝑓𝑸 (𝒙) ..= 𝒙⊤𝑸𝒙 =
∑︁

𝑖, 𝑗∈[𝑛]
𝑖≤ 𝑗

𝑄𝑖 𝑗𝑥𝑖𝑥 𝑗 , (1)

where 𝑸 ∈ R𝑛×𝑛 is an upper triangular matrix, and [𝑛] denotes
the set {1, . . . , 𝑛}. It is an NP-hard optimization problem [16] with
numerous applications, ranging from economics [9, 13] over satis-
fiability [11] and resource allocation [15, 17] to Machine Learning
[1–3, 6, 14], among others. In recent years it has gained renewed
attention because it is equivalent to the Ising model, which can be
solved physically through quantum annealing [8, 10], for which
specialized quantum computers have been developed [5].

Aside from quantum annealing, QUBO can be solved—exactly
or approximately—with a wide range of optimization strategies. A
comprehensive list of approaches can be found in [12].

The most straightforward way to solve QUBO is using brute
force. For large 𝑛, this strategy quickly becomes infeasible, as the
number of binary vectors grows exponentially in 𝑛. However, for 𝑛
up to about 30, which is roughly the order of magnitude currently
solvable (approximately) with the hybrid quantum algorithmQAOA
[7], brute force is an easy-to-implement and reliable way to obtain
the minimal bit vector.

In this article I describe a technique to reduce the computational
cost of brute-forceQUBO solving by a factor of roughly𝑛 compared
to the naive approach. To this end I use the concept of Gray codes
to traverse the space {0, 1}𝑛 ..= {0, 1}𝑛 in a way that allows for the
value of 𝑓𝑸 to be updated incrementally, without evaluating all
𝑛 · (𝑛 + 1)/2 entries of 𝑸 . A Python implementation using NumPy
is developed in Section 3, and ways to improve running time by
using just-in-time compilation and parallelization are described.

2 THEORY
Generally, computing the value of 𝑓𝑸 (𝒙) requires evaluating a sum
over all entries of 𝑸 . However, if the value of 𝒙 is already known to
be 𝑣 , and we want to compute the value of �̃� that differs from 𝒙 in
∗ 0000-0001-8332-6169

Figure 1: Gray Code

only a single bit, we can “update” 𝑣 to obtain 𝑓𝑸 (�̃�), which requires
only 𝑛 values of 𝑸 (see Section 2.1).

Now all that is missing is a way to traverse all vectors in {0, 1}𝑛
by changing only one bit at a time. Luckily, we can take inspiration
from Gray codes, which have exactly the right properties for this
task and are easy to compute (see Section 2.2).

2.1 Updating QUBO values
Let 𝑸 ∈ {0, 1}𝑛×𝑛 be a fixedQUBOmatrix, and 𝒙 ∈ {0, 1}𝑛 a binary
vector. Further, let 𝑣 = 𝑓𝑸 (𝒙). Now, assume we want to flip the
ℓ-th bit of 𝒙 to obtain �̃� and calculate the new value 𝑣 = 𝑓𝑸 (�̃�).
Instead of calculating �̃�⊤𝑸�̃� explicitly, we can look at the difference
between 𝑣 and 𝑣 :

𝑣 = 𝑣 + Δℓ

⇔ Δℓ = 𝑣 − 𝑣

=
∑︁
𝑖≤ 𝑗

𝑄𝑖 𝑗 (𝑥𝑖𝑥 𝑗 − 𝑥𝑖𝑥 𝑗)

= 𝑠ℓ

(ℓ−1∑︁
𝑖=1

𝑄𝑖ℓ𝑥𝑖 +𝑄ℓℓ +
𝑛∑︁

𝑗=ℓ+1
𝑄ℓ 𝑗𝑥 𝑗

)
, (2)

where 𝑠ℓ = 𝑥ℓ − 𝑥ℓ ∈ {−1, +1}.
As we can see from the last line, we only need to read the ele-

ments in the ℓ-th row and column of 𝑸 to calculate Δℓ . This reduces
the computational cost from O(𝑛2) to O(𝑛) per evaluation of 𝑓𝑸 .
As the vector 0 ..= (0, . . . , 0)⊤ always has value 0 for any 𝑸 , we can
start there and never need to fully calculate Eq. (1), if we find a way
to successively flip bits and traverse all 𝒙 ∈ {0, 1}𝑛 . This problem
is addressed next.

https://orcid.org/0000-0001-8332-6169
https://orcid.org/0000-0001-8332-6169

S. Mücke

Algorithm 1 Improved QUBO Brute-Force Solving
𝒙 ← 0
𝑣 ← 0
𝑣∗ ←∞
𝑖 ← 1
while 𝑖 < 2𝑛 do

ℓ ← CTZ(𝑖)
𝑥ℓ ← 1 − 𝑥ℓ
Δℓ ←

∑ℓ−1
𝑖=1 𝑄𝑖ℓ𝑥𝑖 +𝑄ℓℓ +

∑𝑛
𝑗=ℓ+1𝑄ℓ 𝑗𝑥 𝑗

𝑣 ← 𝑣 + (2𝑥ℓ − 1)Δℓ

if 𝑣 < 𝑣∗ then
𝒙∗ ← 𝒙 // memorize minimizing 𝒙 . . .
𝑣∗ ← 𝑣 // . . . and its value

𝑖 ← 𝑖 + 1
return 𝒙∗, 𝑣∗

2.2 Gray Code
When starting at 0 and counting up, the respective binary repre-
sentations of successive numbers often differ in more than one bit
(see Fig. 1, left). For example, to get from 2𝑘 − 1 to 2𝑘 for any 𝑘 ≥ 0,
exactly 𝑘 + 1 bits must be flipped. These transitions where many
bits flip at once are nown as Hamming cliffs [4]. Therefore, this way
of traversing all bitvectors cannot be used with the aforementioned
updating method.

Gray code is an ordering of the natural numbers 𝜋 : N0 → N0
that removes Hamming cliffs, i.e., for any 𝑘 ∈ N0 we find that
𝜋 (𝑘) and 𝜋 (𝑘 + 1) differ in one bit when represented in binary (see
Fig. 1, right). The sequence 𝜋 (0), . . . , 𝜋 (2𝑘 − 1) for any 𝑘 > 1 can
be constructed recursively in binary from the sequence for 𝑘 − 1
through

𝜋 (ℓ) ..=
{
0 · 𝜋 (ℓ) if ℓ < 2𝑘−1

1 · 𝜋 (2𝑘 − ℓ − 1) else
(3)

Here, · denotes string concatenation. For 𝑘 = 1 the code is just
(0, 1).

As only one bit is flipped at a time, we can express 𝜋 equiva-
lently as the sequence of bit indices to flip, starting at 0 and using 0-
indexing. This sequence turns out to be 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, . . . ,
which is known as the binary carry sequence1. Interestingly, it coin-
cides with the number of trailing zeros when writing the natural
numbers 1, 2, 3, . . . in binary, which gives us a very efficient way to
calculate its terms on a CPU (see Section 3). The number of trailing
zeros of a number 𝑘 is denoted by CTZ(𝑘).

Now that we have all necessary ingredients for a more efficient
brute-force strategy, we can combine everything into Algorithm 1.
In the following section, I show how to put it into practice by
implementing it in Python, using NumPy and Numba to improve
the running time, which is why we need to

import numpy as np

from numba import njit

1https://oeis.org/A007814

3 PRACTICE
For comparison, two versions of brute-forceQUBO solvingmethods
will be implemented here: A naive approach and the improved
version described in Algorithm 1.

Assume that the parameters of the QUBO problem instance are
given as an upper-triangular NumPy matrix Q of shape (n, n). For
the naive approach, we will simply loop over all binary vectors
in “ascending order”, i.e., we count up from 0 through 2𝑛 − 1 and
convert each number to its binary representation. This can be done
somewhat efficiently by using NumPy’s broadcasting functionality:
Assume we want to represent an integer k as a binary vector of
length n. We can write:

places = 2**np.arange(n)

x = (k & places) > 0

The operator & performs an element-wise logical AND on the
binary representation of k and each element in k. If the 𝑖-th bit of
k is set, k & 2**i equals 2**i, otherwise it evaluates to 0. Thus,
to make the result binary, we can simply check if it is greater than
zero. Doing this for every bit index 𝑖 and collecting the result in an
array yields the binary representation of k.

To evaluate the QUBO objective function Eq. (1), we can simply
perform the twofold matrix-vector product as

v = x @ Q @ x

All that is missing is the loop over all 2𝑛 vectors, and a running
minimality check. In summary, the naive brute-force algorithm
could look as follows:

def naive_brute_force(Q):
n = Q.shape [0]
initialize bit vector and value
x = np.zeros(n)
v = 0
initialize minimal bit vector and value
x_min = np.zeros(n)
v_min = 0

places = 2 ** np.arange(n) # can be outside loop
for k in range(1, 2**n):

x[:] = (k & places) > 0 # get binary vector from k
v = x @ Q @ x # get QUBO objective value
if v < v_min: # check for minimality

x_min [:] = x # memorize binary vector ..
v_min = v # ..and value

return x_min , v_min

Notice that we can start the loop at 1 and directly set x_min and
v_min to 0, as 𝑓𝑸 (0) = 0 regardless of 𝑸 .

Now let us implement the improved version described in Al-
gorithm 1. There are only few changes compared with the naive
version:

(1) Update 𝒙 incrementally in Gray code order
(2) Update function value 𝑣 incrementally.

To address the first point, we need to implement the CTZ function.
In Python, we have a builtin method int.bit_count(), which
counts the 1 bits in the binary representation of an integer. We can
use this function to determine CTZ of a number k by

(k ^ (k-1)). bit_count ()-1

Intuitively, if a number has ℓ trailing zeros, then subtracting 1 yields
a number with ℓ trailing ones and a zero in (ℓ + 1)-th place. The
XOR (^) of k and k-1 thus consists of ℓ + 1 ones, from which we

https://oeis.org/A007814

Faster QUBO Brute-Force Solving

need to subtract 1 to get just ℓ . This is the index we need to flip 𝒙
at:

x[l] = 1-x[l]

The second point can be implemented by first making the (tri-
angular) QUBO matrix symmetric, which lets us simply read one
row instead of both row and column. Further, we save the diagonal
containing the linear terms in a separate array:

qua = np.triu(Q, 1) # clear diagonal

qua += qua.T # make symmetric

lin = np.diag(Q)

This lets us write Eq. (2) as
delta = (2*x[l]-1) * (qua[l]@x + lin[l])

and the complete implementation reads as follows:
def improved_brute_force(Q):

n = Q.shape [0]
initialize bit vector and value
x = np.zeros(n)
v = 0
initialize minimal bit vector and value
x_min = np.zeros(n)
v_min = 0
separate Q
qua = np.triu(Q, 1)
qua += qua.T
lin = np.diag(Q)
for k in range(1, 2**n):

l = (k ^ (k-1)). bit_count ()-1
x[l] = 1-x[l]
delta = (2*x[l]-1) * (qua[l]@x + lin[l])
v += delta
if v < v_min:

x_min [:] = x
v_min = v

return x_min , v_min

While this code works perfectly fine, Python loops are compara-
tively slow. For this reason, we can use the package numba, which
allows for just-in-time (JIT) compilition of certain, structurally sim-
ple functions to C. In many cases, this increases the performance
considerably. Most NumPy functionality is covered by numba. We
only need to change a single line of our code, as the Python function
int.bit_count() is not supported. We can replace the respective
line with

l = int(np.log2(k ^ (k-1)))

which is functionally equivalent. To enable JIT compilation, we
simply need to add a decorator before both function definitions:

from numba import njit

@njit

def naive_brute_force(Q):

...

@njit

def improved_brute_force(Q):

...

The resulting running times of both methods are shown in Fig. 2.
The experiment was conducted on an Intel Core i7-8700 CPU run-
ning Python 3.10.5 on an Arch-based Linux system. Running times
are averaged over 10 random QUBO instances. We can clearly see
that the improved version is, on average, faster by a factor of about
10 than the naive version on the tested value range.

5 10 15 20 25 30
QUBO dimension n

10−5

10−3

10−1

101

ru
nn

in
g

ti
m

e
t

[s
ec

on
ds

]

naive

improved

Figure 2: Running time comparison between naive brute-
force solving and Algorithm 1; lower is better.

* * * * *

0 0 * * * 0 1 * * * 1 0 * * * 1 1 * * *

0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1

0 −2.3 −1.8 0.2

min

−2.3

Figure 3: Parallel brute-force solving by fixing 2 bits of a 5 bit
vector. The bits marked with * are to be optimized. The steps
seperated by dotted lines can be performed on four different
CPUs in parallel.

3.1 Parallelization
The code presented in the previous section can be easily modified
to be executed in parallel. To this end, we can fix the last𝑚 bits of
every 𝒙 and let the brute-force loop only run over the first 𝑛 −𝑚
bits, and their results combined by taking the minimum.

This way, we obtain 2𝑚 sub-problems, one for each assignment of
𝑚 bits, which can be evaluated in parallel and the results combined

S. Mücke

by taking their minimum. This is exemplarily shown in Fig. 3 for
𝑛 = 5 and𝑚 = 2. Using this technique, if there are 𝑃 CPUs available,
the number of additional bits that can be solved in the same amount
of time is ⌊log2 (𝑃)⌋.

A C implementation of Algorithm 1 using this parallelization
method is given in Appendix A.

4 CONCLUSION
In this work we have seen that brute-force solving QUBO prob-
lems can be made more efficient by updating the function value
incrementally. To this end, we can leverage Gray codes to obtain
an order of traversing all 𝑛-bit vectors in a way that allows us to
compute said function value update more efficiently, reducing the
computational complexity within the loop from O(𝑛2) to O(𝑛).
Moreover, we have seen how to implement the resulting algorithm
in Python. We have further seen how numba can improve perfor-
mance through JIT compilation, which requires next to no changes
to the code. Finally, a parallelization scheme was presented that is
very easy to implement, as demonstrated with the C code given in
Appendix A.

While brute-force solving is still infeasible for large 𝑛, having
a fast implementation of such an algorithm is still a valuable tool
for research purposes. Often, experiments are conducted on low-
dimensionalQUBO instances, e.g., to validate theoretical properties.
Current quantum algorithms like QAOA can solveQUBO instances
with a low two-digit number of qubits. On our machine we are able
to brute-force QUBO instances with 𝑛 = 30 in under 4 seconds,
which is valuable for quickly obtaining ground-truth solutions for
benchmark problems.

Lastly, the algorithm presented here uses some interesting tech-
niques to improve efficiency, that may serve as inspiration for
similar problems.

The multi-threaded C implementation of Algorithm 1 will be
included in the upcoming version 0.3.11 of my Python package
qubolite2:

pip install qubolite

ACKNOWLEDGMENTS
This research has been funded by the Federal Ministry of Education
and Research of Germany and the state of North-Rhine Westphalia
as part of the Lamarr-Institute for Machine Learning and Artificial
Intelligence.

REFERENCES
[1] Christian Bauckhage, Fabrice Beaumont, and Sebastian Müller. 2021. ML2R

Coding Nuggets: Hopfield Nets for Hard Vector Quantization.
[2] Christian Bauckhage, Cesar Ojeda, Rafet Sifa, and Stefan Wrobel. 2018. Adiabatic

Quantum Computing for Kernel k= 2 Means Clustering.. In LWDA. 21–32.
[3] C. Bauckhage, R. Ramamurthy, and R. Sifa. 2020. Hopfield Networks for Vector

Quantization. In Artificial Neural Networks and Machine Learning – ICANN 2020
(Lecture Notes in Computer Science). Springer International Publishing, 192–203.
https://doi.org/10.1007/978-3-030-61616-8_16

[4] Richard A. Caruana and J. David Schaffer. 1988. Representation and Hidden Bias:
Gray vs. Binary Coding for Genetic Algorithms. InMachine Learning Proceedings
1988. Morgan Kaufmann, 153–161. https://doi.org/10.1016/B978-0-934613-64-4.
50021-9

[5] D-Wave Systems. 2021. Technical Description of the D-Wave Quantum Processing
Unit.

2https://github.com/smuecke/qubolite

[6] Prasanna Date, Davis Arthur, and Lauren Pusey-Nazzaro. 2020. QUBO Formu-
lations for Training Machine Learning Models. arXiv:2008.02369 [physics, stat]
(2020). arXiv:physics, stat/2008.02369

[7] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Ap-
proximate Optimization Algorithm. arXiv preprint arXiv:1411.4028 (2014).
arXiv:1411.4028

[8] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. 2000. Quan-
tum Computation by Adiabatic Evolution. arXiv preprint quant-ph/0001106 (2000).
arXiv:quant-ph/0001106

[9] Peter L Hammer and Eliezer Shlifer. 1971. Applications of Pseudo-Boolean
Methods to Economic Problems. Theory and decision 1, 3 (1971), 296–308.

[10] Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum Annealing in the
Transverse Ising Model. Physical Review E 58, 5 (1998), 5355.

[11] Gary Kochenberger, Fred Glover, Bahram Alidaee, and Karen Lewis. 2005. Using
the Unconstrained Quadratic Program to Model and Solve Max 2-SAT Problems.
International Journal of Operational Research 1, 1-2 (2005), 89–100.

[12] Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lü, Haibo
Wang, and YangWang. 2014. The Unconstrained Binary Quadratic Programming
Problem: A Survey. Journal of Combinatorial Optimization 28, 1 (2014), 58–81.

[13] DJ Laughhunn. 1970. Quadratic Binary Programmingwith Application to Capital-
Budgeting Problems. Operations research 18, 3 (1970), 454–461.

[14] Sascha Mücke, Nico Piatkowski, and Katharina Morik. 2019. Learning Bit by Bit:
Extracting the Essence of Machine Learning. In Proceedings of the Conference
on "Lernen, Wissen, Daten, Analysen" (LWDA) (CEUR Workshop Proceedings),
Vol. 2454. 144–155.

[15] Florian Neukart, Gabriele Compostella, Christian Seidel, David von Dollen, Sheir
Yarkoni, and Bob Parney. 2017. Traffic Flow Optimization Using a Quantum
Annealer. Frontiers in ICT 4 (2017).

[16] Panos M Pardalos and Somesh Jha. 1992. Complexity of Uniqueness and Local
Search in Quadratic 0–1 Programming. Operations research letters 11, 2 (1992),
119–123.

[17] Tobias Stollenwerk, Elisabeth Lobe, and Martin Jung. 2019. Flight Gate As-
signment with a Quantum Annealer. In Quantum Technology and Optimization
Problems (Lecture Notes in Computer Science). Springer International Publishing,
99–110. https://doi.org/10.1007/978-3-030-14082-3_9

A C IMPLEMENTATION
The following code is an implementation of Algorithm 1 in C, which
additionally uses the parallelization scheme described in Section 3.1.
For multi-threading, the OpenMP interface is used (be sure to use
the -fopenmp flag when compiling with gcc on Linux). The method
brute_force_parallel expects the QUBO matrix as a 2D array
of double-precision floats.
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <omp.h>

typedef unsigned char bit;

struct _result_t {
bit *x_min;
double v_min;

} typedef result_t;

result_t brute_force_worker(
double **qubo ,
const size_t n,
const size_t m) {
bit x[n];
memset(x, 0, n);
double v = 0;
bit *x_min = (bit*) malloc(n);
double v_min;
// set sub -vector for each thread
size_t p = omp_get_thread_num ();
for (size_t i=0; i<m; ++i)

x[n-i-1] = (p & (1<<i))>0 ? 1 : 0;
// evaluate QUBO once on initial vector
for (size_t i=n-m; i<n; ++i) {

if (x[i] <= 0)
continue;

v += qubo[i][i];
for (size_t j=i+1; j<n; ++j)

v += x[j]*qubo[i][j];
}
// set initial minimal values

https://doi.org/10.1007/978-3-030-61616-8_16
https://doi.org/10.1016/B978-0-934613-64-4.50021-9
https://doi.org/10.1016/B978-0-934613-64-4.50021-9
https://github.com/smuecke/qubolite
http://arxiv.org/abs/physics, stat/2008.02369
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1007/978-3-030-14082-3_9

Faster QUBO Brute-Force Solving

memcpy(x_min , x, n);
v_min = v;

size_t l;
double delta;
for (int64_t i=1; i<(1<<(n-m)); ++i) {

l = __builtin_ctzll(i);
x[l] ^= 1; // flip bit
// calculate function value update
delta = 0;
for (size_t j=0; j<l; ++j)

delta += x[j]*qubo[j][l];
delta += qubo[l][l];
for (size_t j=l+1; j<n; ++j)

delta += x[j]*qubo[l][j];
v += x[l] ? delta : -delta;
if (v < v_min) {

memcpy(x_min , x, n);
v_min = v;

}
}
result_t result = {x_min , v_min};
return result;

}

result_t brute_force_parallel(double **qubo , const size_t n) {
// determine max. number of threads
const int64_t p_max = omp_get_max_threads ();
// take floor of log2 of p_max to get
// max number of bits that can be fixed
const size_t m = 63 - __builtin_clzll(p_max);
const size_t M = 1<<m; // number of threads
// allocate space for sub -results
result_t results[M];
// make sure to use exactly 2**m threads
omp_set_dynamic (0);
#pragma omp parallel num_threads(M)
{

results[omp_get_thread_num ()]
= brute_force_worker(qubo , n, m);

}
// get global minimum

bit *x_min = (bit*) malloc(n);
double v_min = 0;
double v;
for (size_t i=0; i<M; ++i) {
v = results[i].v_min;

if (v<v_min) {
memcpy(x_min , results[i].x_min , n);

v_min = v;
}
free(results[i].x_min);
}
result_t result = {x_min , v_min};
return result;

}

int main() {
const size_t n = 8;
double **qubo = (double **) malloc(n*sizeof(double *));
for (size_t i=0; i<n; ++i)
qubo[i] = (double *) malloc(n*sizeof(double));

for (size_t i=0; i<n; ++i) {
for (size_t j=0; j<n; ++j) {

if (i>j)
qubo[i][j] = 0;

else
qubo[i][j] = (double) (i-j+2);
}

}

result_t result = brute_force_parallel ((double **) qubo , n);
printf("minimum vector: ");
for (size_t i=0; i<n; ++i)
printf("%d", result.x_min[i]);
printf("\nminimum value: %f\n", result.v_min);

// free all allocated resources
free(result.x_min);
for (size_t i=0; i<n; ++i)
free(qubo[i]);
free(qubo);

}

	Abstract
	1 Introduction
	2 Theory
	2.1 Updating QUBO values
	2.2 Gray Code

	3 Practice
	3.1 Parallelization

	4 Conclusion
	References
	A C Implementation

