
ML2R Coding Nuggets
Reproducible Machine Learning Experiments

Lukas Pfahler
Artificial Intelligence Group
TU Dortmund University
Dortmund, Germany

Alina Timmermann
Artificial Intelligence Group
TU Dortmund University
Dortmund, Germany

Katharina Morik
Artificial Intelligence Group
TU Dortmund University
Dortmund, Germany

ABSTRACT
The scientific areas of artificial intelligence and machine learning
are rapidly evolving and their scientific discoveries are drivers of
scientific progress in areas ranging from physics or chemistry to
life sciences and humanities. But machine learning is facing a re-
producibility crisis that is clashing with the core principles of the
scientific method: With the growing complexity of methods, it is
becoming increasingly difficult to independently reproduce and
verify published results and fairly compare methods. One possible
remedy is maximal transparency with regard to the design and
execution of experiments. For this purpose, best practices for han-
dling machine learning experiments are summarized in this Coding
Nugget. In addition, a convenient and simple library for tracking
of experimental results, meticulous-ml [17], is being introduced
in the final hands-on section.

1 REPRODUCIBLE MACHINE LEARNING
The release of data and code was declared a necessary condition
for scientific publication [15]. Unfortunately in machine learning
research, unpublished code and sensitivity to exact training con-
ditions make many claims hard to verify [8]. Thus, most compu-
tational research results presented today at conferences and in
publications cannot be verified [3]. Reproduction of ML experi-
ments can be necessary due to biases, scientific diligence, fraud [4]
or means of comparison. There is also the assumption that common
demand for high publication rates encourages misleading discover-
ies [20]. It seems that addressing reproducibility issues requires a
transformation of publication culture [12]. Therefore, reproducibil-
ity in machine learning and data science gained more importance
at top conferences in the last decade [1, 8, 18, 21].

There are no defined terms for reproducibility. Some distinguish
reproducibility and replicability [12]. Reproducibility focuses on
recreating results by using the original code while replication gen-
erates results independently from original data [21]. Others differ-
entiate reproducibilty of results and reproducibility of findings [1].
Reproducibility of results relates to the replication of generated
numbers. The validity of experimental conclusions is covered by
reproducibility of findings. Codesharing is an important practice for
improving reproduciblity of results, but insufficient for obtaining
reproducibility of findings. Some researchers argue that appropriate
experimental design is key for achieving adequate overall model
performance and high reproducibility of findings [1, 13, 14]. In this
paper, the reproducibility of results will be the main topic. For this
purpose, common best practices for codesharing, result-tracking
and archiving, and for proper experimental design will be sum-
marized. Furthermore, a solution in form of the python library
meticulous-ml created by Ashwin Paranjape will be presented.

2 BEST PRACTICES
For ensuring proper reproducibility of results of machine learning
experiments, there will be suggestions for some best-practices in
the following.

Version control of Source Code. All the source code written to exe-
cute the experiments should be under version control. The de-facto
standard tool for version control is Git [22], although alternatives
exist. Code should run from clean Git repositories only, i.e. reposi-
tories with no uncommitted changes. This allows to associate the
exact status of the code with the experiment run by its unique
commit identifier that is provided by the version control software.
Consequently, to replicate an experimental result, we can revert
the code to the exact version used.

Version Control of all Dependencies. Most machine learning ex-
periments rely heavily on software libraries such as Tensorflow
or Scikit-learn. These libraries are rapidly evolving and new ver-
sions are released frequently. Hence it is important to keep track of
which version of libraries was used in an experiment. It is generally
recommended to use one environment for each project using tools
like Venv or Anaconda for python environments, or Docker [2]
on the operating system level, and specify which libraries should
be installed using the respective config-files. However, we should
not rely on these config-files for ensuring reproduciblity: They of-
ten allow vague version constraints (e.g. “newer than v1.2”), and
a user can update a library without also editing the environment
config-file. Hence we should also capture the software versions at
runtime.

Version Control of Data. There are less established software solu-
tions for version control of data, though research data management
is becoming increasingly important in science and more protocols
are established in institutions [24]. For instance, open science data
is often published and associated with a unique digital object iden-
tifier (DOI). Locally, all scripts that access, filter or preprocess the
data should also be under version control. Whenever possible, we
should include a script for obtaining the original data, alternatively
we can maintain a description of how and where to obtain it. Inter-
mediate data files, e.g. preprocessed data, should have meta data
that contains, among others, a timestamp, a reference to the git
commit of the preprocessing utility script that has been used, as
well as a reference to all the input files that were used to generate
the output. Many file formats support attaching meta data. For
instance, in .json files or .hdf5 files a new field for meta data can
be introduced and .csv files can begin with a comment section. If
this is not possible, a metadata file should be stored next to the data
file and copied around with the data.

https://orcid.org/0000-0003-4012-4502
https://orcid.org/0000-0003-1153-5986

L. Pfahler, A. Timmermann, and K. Morik

Tracking of all Hyperparameters. Machine learning methods, par-
ticularly deep learning approaches, have many hyperparameters
and much time is spend tuning these parameters to maximize per-
formance, either manually or automatically. Thus, we need to track
all these hyperparameters to replicate the experiment later. When
we are interested in reproducing the results of randomized algo-
rithms, it is important to also track the random seeds used for the
random generator.

Tracking of all Results. We want to archive all the outcomes of
an experiment. That includes any metric, including runtime, that
we evaluate to judge the quality of a machine learning model, but
also other outputs like the model itself or any other result files.
It is important that each result or output can be associated with
the corresponding experiment. Often it is also useful to capture all
console outputs as well as error messages in text files.

Reproducibility of Findings. For maximum reproducibility of find-
ings, experiments should be carried out multiple times with various
initialization and different environments. These practices result
in claims with sufficient statistical significance [7]. For training
data, unbiased data in large quantities should be used. Negative
outcomes in an experimental setup should also be published [19].
These measures potentially highlight pros and cons of a model and
enhance the understanding of how or when it operates superior.

Use Experiment Tracking Software. All the above information
needs to be tracked, linked and archived. For this purpose, software
solutions such as Sacred [6], MLflow [10], Tensorboard, Wandb
[23], Theano [11] or Gym [16] exist and should be used. They
provide convenient solutions to reproducibility that do not require
changing large amounts of code. When we do machine learning
experiments on cloud platforms, they often provide their own tools
for reproducibility [9]. In the next section, we will present another
software solution, meticulous-ml, in greater detail.

3 THE meticulous-ml LIBRARY FOR PYTHON
In this section, we present the python library meticulous-ml [17],
originally written by Ashwin Paranjape, that supports machine
learning researchers by handling many of the requirements for
reproducible research established above, while requiring only min-
imal code changes for existing experiment scripts. Perhaps most
importantly, it is, as Hady Elsahar puts it, “suitable for the messy,
clueless nature of research” [5]. We see an example for tracking
a simple machine learning experiment, training and evaluating a
random forest classifier, in Listing 1 and continue to discuss the
highlighted, crucial changes to incorporate meticulous.

First, to install meticulous-ml, we recommend using pip:

pip install \

"git+https :// github.com/Whadup/meticulous -ml"

but manual installation is also possible.
To enable tracking of an experiment, we have to instanciate an

Experiment object. One convenient way is to derive it from the
argument parser, simultaneously capturing all the hyperparame-
ters provided by the user. Alternatively, we can manually provide
all arguments that we want to capture. When the experiment is
initialized, a folder is created on the local filesystem. It contains

Listing 1: Capturing an experiment with meticulous-ml. We
highlighted the changes necessary to ensure reproducibility.
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import (accuracy_score , f1_score)
import argparse
import pickle
from meticulous import Experiment

parser = argparse.ArgumentParser ()
parser.add_argument('--max -depth', type=int , default =8)
parser.add_argument('--dataset ', type=str , default="mozilla4")
Adds the "meticulous" argument group to your script
Experiment.add_argument_group(parser)
Creates experiment object and extracts all hyperparameters
experiment = Experiment.from_parser(parser)
args = parser.parse_args ()

#load and split training data
X, y = fetch_openml(args.dataset , return_X_y=True)
y = LabelEncoder (). fit_transform(y)
X_train , X_test , y_train , y_test = train_test_split(X, y)

train and validate the model
model = RandomForestClassifier(max_depth=args.max_depth)
model.fit(X_train , y_train)

Log metrics in experiment directory
accuracy = accuracy_score(model.predict(X_test), y_test)
f1 = f1_score(model.predict(X_test), y_test)
print(f"Accuracy: {accuracy :.4f}, F1-Score: {f1:.4f}")
experiment.summary(accuracy=accuracy , f1=f1)

Writes model file to the experiment directory
with experiment.open('model.pickle ', 'wb') as f:

pickle.dump(model , f)

Listing 2: Automatically generated file hierarchy of the
meticulous-ml experiment directory (left) with description
of each file or sub-directory (right).
$ find ./ experiments_dir

./ experiments_dir/ ← directory for all records
1/ ← first experiment run

[...]
2/ ← second experiment run

args.json ← all cmd-line arguments
some_output.txt ← we can save custom files, too
metadata.json ← all meta-data
STATUS ← success, failure or still running?
stdout ← captured std-output
stderr ← captured std-error
summary.json ← all user summaries

all information related to this experiment run in human-readable
format: All standard output and errors will be captured, the hyper-
parameters provided through the argument parser will be stored
and the meta data discussed in the previous section, including ver-
sion control information, used software libraries, execution time,
etc., will be captured.

When we want to capture metrics like accuracy or f1-score, we
can use the experiment.summary() method. Now these scores
are stored in a standardized way and can easily be retrieved and
compared, for instance using the CLI tool described below.

Reproducible Machine Learning Experiments

Listing 3: Example for using the CLI tool meticulous to aggregate metrics and summarize experimental results. Meticulous
automatically computes mean and standard deviation for numerical summaries if we use the —-groupby argument.
$ meticulous experiment_dir

--filter 'args_dataset ==" magictelescope"' \
--groupby 'args_max_depth ' \
--sort 'summary_accuracy_mean ' \
--columns 'args_max_depth ,summary_accuracy_mean ,summary_accuracy_std ,summary_f1_mean ,summary_f1_std '
--export results.tex

args_max_depth summary_accuracy_mean summary_accuracy_std summary_f1_mean summary_f1_std
7 10 0.8706 0.0041 0.7946 0.0080
6 9 0.8681 0.0045 0.7913 0.0068
5 8 0.8610 0.0056 0.7756 0.0080
4 7 0.8515 0.0048 0.7579 0.0079
3 6 0.8486 0.0048 0.7488 0.0070
2 5 0.8379 0.0062 0.7269 0.0101
1 4 0.8288 0.0060 0.7041 0.0124
0 3 0.8038 0.0080 0.6382 0.0165

When we want to store and archive files, replace open() with
experiment.open() to obtain a file handle in the folder associ-
ated to the experiment run. Listing 2 summarizes the folder struc-
ture automatically created to archive the experiment results by
meticulous-ml.

To ease browsing the results, we recommend using the CLI tool
meticulous to select, filter, group and sort the runs and export
the resulting tabular data into a variety of formats. In Listing 3
we see an example for analyzing the experimental results of the
performance of the random forest classifier in our example. We
have run this experiment for different values of max_depth, using
multiple runs per configuration. We filter the results to only show
runs relating to the magictelescope dataset and compute means
and standard deviations over the repeated runs. We sort the results
to show the runs with the best average accuracy first and select
only a subset of the table columns. Exporting this table in LaTex
format allows us to easily include the results in a scientific article.

This concludes the quick introduction into the meticulous-ml
library: We have seen that minimal code changes already result in
large increases in reproducibilty of results. Furthermore, it provides
a convenient commandline tool for browsing, summarizing and
exporting the results.

ACKNOWLEDGMENTS
This material was produced within the Competence Center for
Machine Learning Rhine-Ruhr (ML2R) which is funded by the
Federal Ministry of Education and Research of Germany (grant no.
01|S18038C). The authors gratefully acknowledge this support.

REFERENCES
[1] Xavier Bouthillier, César Laurent, and Pascal Vincent. 2019. Unreproducible

Research is Reproducible. In Proceedings of the 36th International Conference on
Machine Learning. PMLR.

[2] Inc. Docker. 2021. Docker Website. https://www.docker.com/
[3] David Donoho, Arian Maleki, Inam Ur Rahman, and Morteza Shahram. 2009. 15

Years of Reproducible Research in Computational Harmonic Analysis. Computing
in Science & Eng. 11, 1 (2009), 8–18. https://doi.org/10.1109/MCSE.2009.15

[4] David Eisner. 2017. Reproducibility of Science: Fraud, Impact Factors and
Carelessness. Journal of molecular and cellular cardiology (2017). https:
//doi.org/10.1016/j.yjmcc.2017.10.009

[5] Hady Elsahar. 2019. How do you manage your Machine
Learning Experiments? https://hadyelsahar.medium.com/
how-do-you-manage-your-machine-learning-experiments-ab87508348ac

[6] Klaus Greff, Aaron Klein, Martin Chovanec, and Frank Hutter. 2017. The Sacred
Infrastructure for Computational Research. In Proceedings of the 15th Python in
Science Conference (SCIPY 2017). 49–56.

[7] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. 2019. Deep Reinforcement Learning that Matters.

[8] By Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis. 359,
6377 (2018).

[9] Richard Isdahl and Odd Erik Gundersen. 2019. Out-of-the-box Reproducibility :
A Survey of Machine Learning Platforms. November (2019). https://doi.org/10.
1109/eScience.2019.00017

[10] Harutaka Kawamura, Arjun DCunha, Andrew Chen, Richard Zang, and Others.
[n. d.]. MLflow. https://mlflow.org/

[11] LISA lab Revision. 2021. Theano Documentation. https://theano-pymc.
readthedocs.io/en/latest/

[12] Randall J. LeVeque, Ian M. Mitchell, and Victoria Stodden. 2012. Tools and
Strategies. Computing in Science and Engineering (2012), 13–17.

[13] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet.
2018. Are GANs Created Equal? A Large-Scale Study.

[14] Gábor Melis, Chris Dyer, and Phil Blunsom. 2017. On the State of the Art of
Evaluation in Neural Language Models.

[15] National Academy of Sciences. 2021. PNAS’s submission guidelines including
data sharing plans. https://www.pnas.org/authors/submitting-your-manuscript#
manuscript-formatting-guidelines

[16] OpenAI. 2021. Gym Website. https://gym.openai.com/
[17] Ashwin Paranjape and Lukas Pfahler. [n. d.]. meticulous-ml. https://github.com/

Whadup/meticulous-ml/
[18] Edward Raff, Booz Allen Hamilton, and Baltimore County. 2019. A Step Toward

Quantifying Independently Reproducible Machine Learning Research. NeurIPS
(2019).

[19] D. Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. 2018. Winner’s Curse?
On Pace, Progress, and Empirical Rigor. https://openreview.net/forum?id=
rJWF0Fywf

[20] Paul E. Smaldino and Richard McElreath. 2016. The natural selection of bad
science. Royal Society Open Science 3, 9 (Sep 2016), 160384. https://doi.org/10.
1098/rsos.160384

[21] Victoria Stodden, Friedrich Leisch, and Roger D. Peng. 2014. Implementing
reproducible research. CRC Press.

[22] Linus Torvalds, Junio Hamano, and Others. 2005. Git - fast, scalable, distributed
revision control system. https://git-scm.com/

[23] Weights & Biases. 2021. wandb. https://docs.wandb.ai/quickstart
[24] Mark D. Wilkinson and others. 2016. The FAIR Guiding Principles for scientific

data management and stewardship. Scientific Data 3, 1 (2016), 160018. https:
//doi.org/10.1038/sdata.2016.18

https://www.ml2r.de
https://www.docker.com/
https://doi.org/10.1109/MCSE.2009.15
https://doi.org/10.1016/j.yjmcc.2017.10.009
https://doi.org/10.1016/j.yjmcc.2017.10.009
https://hadyelsahar.medium.com/how-do-you-manage-your-machine-learning-experiments-ab87508348ac
https://hadyelsahar.medium.com/how-do-you-manage-your-machine-learning-experiments-ab87508348ac
https://doi.org/10.1109/eScience.2019.00017
https://doi.org/10.1109/eScience.2019.00017
https://mlflow.org/
https://theano-pymc.readthedocs.io/en/latest/
https://theano-pymc.readthedocs.io/en/latest/
https://www.pnas.org/authors/submitting-your-manuscript#manuscript-formatting-guidelines
https://www.pnas.org/authors/submitting-your-manuscript#manuscript-formatting-guidelines
https://gym.openai.com/
https://github.com/Whadup/meticulous-ml/
https://github.com/Whadup/meticulous-ml/
https://openreview.net/forum?id=rJWF0Fywf
https://openreview.net/forum?id=rJWF0Fywf
https://doi.org/10.1098/rsos.160384
https://doi.org/10.1098/rsos.160384
https://git-scm.com/
https://docs.wandb.ai/quickstart
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18

	Abstract
	1 Reproducible Machine Learning
	2 Best Practices
	3 The meticulous-ml library for Python
	References

