
ML2R Coding Nuggets
AdaBoost with Pre-Trained Hypotheses

Christian Bauckhage

Machine Learning Rhine-Ruhr

Fraunhofer IAIS

St. Augustin, Germany

ABSTRACT
In preparation for things to come, we discuss the general ideas

behind AdaBoost (for binary classifier training) and present efficient

NumPy code for boosting pre-trained weak hypotheses.

1 INTRODUCTION
Boosting algorithms aremeta learning algorithms commonly used

for training regression or classification models. The basic idea is to

assemble several weak models, which individually are not really

good at solving the task at hand, into a strong model and the crucial

characteristic of boosting algorithms is that they build such an

ensemble in a theoretically well founded and principled manner.

Note that we just used the terms weak model and strong model.
Synonyms commonly found in the literature includeweak learner or
weak hypothesis for the former and strong learner or boosted model
for the latter. What all these terms actually signify will become

apparent in the next section.

Over the years, many boosting algorithms have been reported.

Notable examples include (in chronological order): AnyBoost [9],

LogitBoost [5], InfoBoost [1], gradient boosting [6], BrownBoost

[2], SemiBoost [8], functional boosting [18], and precision-based

boosting [11]. But the granddaddy of them all is AdaBoost due to
Freund and Shapire [3, 4].

It is fair to say that, when it came out, AdaBoost revolutionized

the theoretical understanding and practical applicability of machine

learning methods. Originally, it was developed for binary classifier

training, however, extentions to multi-class classification and re-

gression are straightforward [15]. We are interested in AdaBoost

because it naturally lends itself to informed machine learning which
integrates data- and knowledge-driven techniques [17]. We will

discuss this in great detail in a series of upcoming notes; here, we

merely set the stage for this discussion.

To keep things simple, we focus on AdaBoost for binary classi-

fier training and consider the following scenario: Given annotated

training data

D =
{(
x1,y1

)
,
(
x2,y2

)
, . . . ,

(
xn ,yn

)}
where the data points x j ∈ Rm have been sampled from two classes

Ω1 and Ω2 and their labelsyj ∈ {−1,+1} indicate class membership

in that

yj =

{
+1, if x j ∈ Ω1

−1, if x j ∈ Ω2

we want to train a binary classifier H : Rm → {−1,+1} which can

predict (hopefully correct) class labels for previously unobserved

data points.

Ω1

Ω2

Figure 1: Didactic training data x j ∈ R2. Note that classes Ω1

(orange dots) and Ω2 (blue dots) are not linearly separable.

In other words, our practical problem is to train a classifier H
such that it learns to recognize if an input x belongs to class Ω1 or

Ω2 and thus is able to predict a corresponding class label

y = H (x) =

{
+1, if x ∈ Ω1

−1, if x ∈ Ω2

Our strategy will be to run AdaBoost in order to assemble a

strong model H from a set of weak models h1, h2, . . .
However, we will deviate from the currently predominant use

of the method and consider a few twists and turns. For instance,

we will not train the weak learners on the fly but assume that

an expert has provided us a reasonable set of pre-trained models

among which we need to select the most appropriate ones. This is

not as revolutionary as it may sound but reflects how boosting was

often done in the olden days. Also, we will not consider our weak

models to be decision trees (or stumps) but will work with linear

classifiers instead. This is surprisingly uncommon but —as we shall

see later— connects boosting to neural network training.

Next, we first clarify the meaning behind the terms weak and

strong model or hypothesis (section 2). We then discuss the theory

behind AdaBoost and its adaptation to settings with given hypothe-

ses (section 3). Afterwards, we put theory into practice and discuss

corresponding NumPy code (section 4). Finally, we conclude with a

summary and an outlook.

Readers who would like to experiment with our code snippets

should be passingly familiar with NumPy and SciPy [12] and only

need to

import numpy as np

https://orcid.org/0000-0001-6615-2128
https://en.wikipedia.org/wiki/Meta_learning_(computer_science)
https://en.wikipedia.org/wiki/AdaBoost

C. Bauckhage

2 SETTING THE STAGE
Before we turn to boosting, let us take a step back, reconsider what

we said in the introduction, and ponder the following reasonable

and truly fundamental questions:

Q1: What does it mean to train a model?

Q2: Where does the model come from?

Well, machine learning is the science of mathematical model fit-

ting where mathematical models are understood to be mathematical

functions with a certain, problem specific input/output behavior.

For instance, in binary classification, the problem is to classify data,

the inputs are data points, and the outputs are class labels.

The crux is that there are infinitely manymathematical functions

which canmap data points to labels. Since it is practically impossible

to consider them all, we have to make modeling assumptions and

must consider which family of functionsmight be suited for the task

at hand. In other words, we human experts must choose what kind

of model we want to train in order to solve our problem. In machine

learning parlance we say that we have to decide for a hypothesis
class H .

Now, a hypothesis class can be as complex and powerful as the

class of all deep neural networks with input/output layers whose

dimensions match the dimensions of the in- and outputs we are deal-

ing with. Or it could be as simple as the classes of shallow decision

trees or linear classifiers of appropriate input/output dimensions.

In either case, the hypothesis classH once again contains infinitely

many models or hypotheses h.
It is therefore important to require that the h ∈ H are models

with adjustable parameters. For neural networks, the model param-

eters are connection weights and bias values; for decision trees;

they are split dimensions and thresholds; for linear classifiers, they

are again weights and bias values albeit much less than in the case

of neural networks.

This is where model training comes into play. Once we have

decided for a model or hypothesis classH , we also need to decide

for a training algorithm which automatically adjusts the model

parameters such that the final hypothesis h∗ ∈ H resulting from

this optimization procedure solves our problem well. For neural

networks, we typically use (variants of) the backpropagation algo-

rithm, decision trees are trained using algorithms such as C4.5 or

CART, and linear classifiers can be trained by a variety of methods

each tailored towards a different loss function.

Speaking of loss functions, we also recall that model training

is statistical optimization. The objective typically consists in mini-

mization a loss function

L(D) =
∑
j
L
(
h(x j),yj

)
which quantifies deviations between model predictions h(x j) and
ground truths yj . Depending on the model complexity, training

may or may not require several passes over the training data. In

either case, the statistical nature of model training is due to two

implicit characteristics of the whole approach.

First of all, the quality of a final hypothesis h∗ crucially depends

on the quality of the training data; different training samples may

lead to different results. Second of all, loss functions typically reflect

sample statistics such as expected values or divergences.

What does all of this have to do with classifier boosting? Well, as

we said in the introduction, boosting algorithms are meta learners

which implement a different philosophy of model training.

They, too, consider a hypothesis classH but instated of training

a final hypothesis h∗ ∈ H they train a modelH < H . However, this

model H incorporates (many) models h ∈ H . For instance, in the

context of binary classification, it is usually assumed to be

H (x) = sign

(T∑
t=1

αt ht (x)

)
In a sense, boosting algorithms therefore do more work: they

train the individual models ht and also determine the meta model

parameters αt ∈ R. However, if the chosen hypothesis classH is a

class of rather simple models, the effort for training the ht ∈ H is

typically low. Still, this would yield no advantage if the effort for

estimating the αt was high. The good news is that it is not.

Indeed, the breakthrough Freund and Shapire achieved with

AdaBoost was to establish that estimating appropriate meta model

parameters is actually easy. A considerable added benefit is that

theory and practice since have shown that, even ifH is a hypothesis

class of very weak learners h, i.e. of models h that are so simple

that they will never perform really well on their own, the boosted

model H is typically very strong.

In the next section, we explain all of this in greater detail and

discuss simple modifications which connect AdaBoost to informed

learning paradigms.

3 THEORY
For convenience, we begin our discussion of AdaBoost for binary

classification by reiterating the practical problem specified in the

introduction, namely: given training data

D =
{(
x j ,yj

)}n
j=1

(1)

where the data points x j ∈ Rm were sampled from two classes Ω1

and Ω2 and the yj ∈ {−1,+1} are corresponding class labels, we

want to train a binary classifier H : Rm → {−1,+1}.
In particular, we want to run AdaBoost to train a classifier of the

form

H (x) = sign

(T∑
t=1

αt ht (x)

)
(2)

where αt ∈ R, ht ∈ H , and H is an almost arbitrary hypothesis

class of our liking.

We just said almost arbitrary because there is one condition the

hypotheses have to meet in our scenario, namely they have to be

functions of the form

h : Rm → {−1,+1} (3)

By the same token, we must insist on bipolar labels yj ∈ {−1,+1}
in our training data. Both these things are necessary for the math

at the heart of AdaBoost to work
1
.

1
Requirements like these are not uncommon. For instance, they also occur in the

theory of SVM training. Of course one could argue that it would be nicer to work with

any kind of label values but (products of) the numbers −1 and +1 have interesting

properties that can be exploited to obtain compact yet expressive equations.

AdaBoost with Pre-Trained Hypotheses

Algorithm 1 “classical” AdaBoost

Input: training data D =
{
(x j ,yj)

}n
j=1

Input: hypothesis classH

Input: parameter T
1: // initialize weight distribution P

2: for j = 1, . . . ,n
3: pj ←

1

n

4:

5: for t = 1, . . . ,T
6: // train weak model ht ∈ H on data x j weighted by pj
7: ht ← trainWeakModelH (D, P)

8:

9: // compute classification error of model ht
10: ϵ ←

∑
j pj · ∆

(
ht (x j),yj

)
11:

12: // compute coefficient αt

13: αt ←
1

2
· ln

(
1−ϵ
ϵ

)
14:

15: // update weight distribution P

16: for j = 1, . . . ,n
17: pj ← pj · e

−αt ·ht (x j)·yj

18: for j = 1, . . . ,n
19: pj ←

1∑
k pk

Output: strong model H (x) = sign

(∑T
t=1 αt ht (x)

)

There is one more thing we require from our hypothesis classH :

there must exist at least one training algorithm for fitting models

inH to labeled training data as in (1). We will generically call this

algorithm trainWeakModelH .

These very general assumption are really all we need to discuss

the inner workings of AdaBoost. For now, we will therefore leave

further details regardingH unspecified and also do not care about

how trainWeakModelH works.

However, we need to fix one more piece of notation before we

can dive into AdaBoost: recall that the Kronecker delta of any two

numbers a and b is given by

δ (a,b) =

{
1 if a = b

0 otherwise

(4)

We may thus define an “anti” Kronecker delta as

∆(a,b) = 1 − δ (a,b) =

{
0 if a = b

1 otherwise

(5)

At this point, we are good to go and can, first of all, look at the

mechanics of “classical” AdaBoost and then, second of all, discuss

AdaBoost with pre-trained hypotheses.

3.1 “Classical” AdaBoost
Algorithm 1 shows (rather verbose) pseudo-code for AdaBoost as

introduced by Freund and Shapire [3, 4]. It does, of course, require

some explanation.

During its operation, AdaBoost maintains a set of weights

P =
{
p1,p2, . . . ,pn

}
(6)

which are used to weight the data points

X =
{
x1, x2, . . . ,xn

}
(7)

in the given training data D. Note that P is a discrete probability

distribution because the pj ∈ R contained in P must obey

pj ≥ 0 (8)∑
j
pj = 1 (9)

Initially (in lines 2–3), all these weights are set to the same value
1

n .

AdaBoost is an iterative procedure and performs T iterations

where T is a parameter specified by the user.

In each iteration t , AdaBoost first calls trainWeakModelH to

fit a model ht to the training data in D where the training data

points x j are weighted by their corresponding current weights pj .
The exact nature of this weighting mechanism will depend on the

nature of the hypothesis classH and we do not discuss it further.

Once the trained model ht is available, AdaBoost evaluates it on
the training data and computes a weighted classification error ϵ .
For correctly classified training data, we have ∆

(
ht (x j),yj

)
= 0 so

they do not contribute to ϵ . For incorrectly classified training data,

we have ∆
(
ht (x j),yj

)
= 1 so they contribute an amount pj to ϵ .

Once the classification error ϵ of model ht has been determined,

AdaBoost uses it to compute the coefficient αt for ht .
Finally, once αt has been determined, AdaBoost updates the

weight distribution P. This happens in lines 16–19 and we are

deliberately specific about these updates. In particular, lines 18–19

re-normalize the updated weights such that they sum to one. In the

literature, the weight updates are often written as

pj ←
1

Z
· pj · e

−αt ·ht (x j)·yj
(10)

and accompanied by the statement that Z is a normalization con-

stant. The reason why spelled out normalization the way we did

has to do with the modern blogosphere
2
.

Finally, once the for loop over t has terminated, AdaBoost has

determined all the ingredients of the strong classifier in (2).

Of course there still are numerous open questions: Why and how

does all of this work? Why are ϵ and αt computed the way they

are? Why do the weight updates involve exponentials?

While these are good and valid questions, answering them now

would take us too far astray from the main points of this section.

We therefore defer (very) detailed answers to these questions to the

appendix and encourage interested readers to carefully go through

the explanations presented there.

At this point, we simply claim that this stage-wise construction

of a strong classifier H (x) as a linear combination of several weak

classifiers h(x) is guaranteed to work. And don’t worry, we will go

through a practical example below.

2
There are numerous machine learning blogs on the Web, some of them of high quality,

some of them of abysmal quality, many of them with a tendency to oversimplify things.

With respect to posts on AdaBoost the latter two seem to abound. Indeed, googling

for “AadBoost” yields many links to blogs with downright horrific explanations. For

instance, we came across posts stating that normalization by Z is a cryptic or obscure

or unnecessary step. But neither is the case! The pj ∈ P must sum to one and lines

18–19 show how to ensure this after the updates in lines 16–17.

C. Bauckhage

3.2 AdaBoost with Pre-Trained Hypotheses
It used to be somewhat common to run AdaBoost on a given discrete

set of weak models rather than to have it train a model in each

of its iterations [10, 14]. This requires slight modifications of the

pseudo-code in Alg. 1, but, regarding practical implementations,

can lead to rather efficient code. Here, we discuss the necessary

modifications; our claims w.r.t. code will be substantiated in the

next section.

Throughout, we assume to be given a set of pre-trained models

M =
{
h1,h2, . . . ,hk

}
⊂ H (11)

That is, we assume we are given models hi which come from some

hypothesis class (say, linear classifiers) but whose parameters have

already been estimated and need not be trained anymore.

What differencewill thismake compared to “classical” AdaBoost?

Well, consider this: instead of training a model at the beginning of

each round of boosting, we now only need to determine which of

the given hi has the lowest weighted classification error. Hence,

while “classical” AdaBoost produces a strong model as in (2) which

involves a linear combination overT previously unknown hypothe-

ses ht , AdaBoost with pre-trained models will necessarily produce

a boosted classifier

H (x) = sign

(k∑
i=1

λi hi (x)

)
(12)

that involves a linear combination over k given hypotheses hi .
How do we determine the k coefficients λi? Well, initially, we

may set them all to zero. Then, at the beginning of each round of

boosting, we need to compute the weighted classification error

ϵi =
∑
j
pj · ∆

(
hi (x j),yj

)
(13)

for each of our given models. If we denote the index of the currently

best performing model by

l = argmin

i
ϵi (14)

we can compute the value

α ←
1

2

· ln

(
1 − ϵl
ϵl

)
(15)

and then use it to update the current estimate for coefficient λl as

λl ← λl + α (16)

The final modificationwemust pay attention to is that the weight

updates at the end of each round of boosting are now computed as

pj ←
1

Z
· pj · e

−α ·hl (x j)·yj
(17)

Now, let us be clever and vectorize all of this! Consider this: since
the training data (x j ,yj) and models hi are given in advance and

fixed, the quantities ∆
(
hi (x j),yj

)
and hl (x j) ·yj which occur in (13)

and (17) can be computed before we begin boosting. That is, we

can compute two matrices

∆ ∈ Rk×n where ∆i j = ∆
(
hi (x j),yj

)
(18)

and

U ∈ Rk×n where Ui j = hi (x j) · yj (19)

and pass them to the boosting routine.

Algorithm 2 AdaBoost with pre-trained hypotheses

Input: matrix ∆ ∈ Rk×n

Input: matrixU ∈ Rk×n

Input: parameter T
1: // initialize coefficient vector λ
2: λ ← 0
3:

4: // initialize weight vector p
5: p ← 1

n 1
6:

7: for t = 1, . . . ,T
8: // evaluate models hi ∈ M on data x j weighted by pj
9: ϵ = ∆p
10:

11: // determine best current model

12: l ← argmini ϵi
13:

14: // compute α

15: α ← 1

2
· ln

(
1−ϵl
ϵl

)
16:

17: // update coefficient λl
18: λl ← λl + α
19:

20: // update weight vector p
21: p ← 1

Z · p ⊙ exp

[
−α Ul :

]
Output: coefficients λ for model H (x) = sign

(∑k
i=1 λi hi (x)

)

If we further collect the weights pj in a vector p ∈ Rn , we can
compute all the classification errors at the beginning of each round

of boosting in terms of a single matrix vector product, namely

ϵ = ∆p (20)

By the same token, the weight updates at the end of each round of

boosting can then be realized as

p ←
1

Z
· p ⊙ exp

[
−α Ul :

]
(21)

where Ul : denotes row l of matrix U , exp[·] is understood to act

entry-wise, and ⊙ is the Hadamard- or entry-wise product of two

vectors.

All in all, AdaBoost with pre-trained hypotheses is therefore as

simple as summarized in Alg. 2

3.3 A Didactic Example
Let us next look at a practical example for the behavior of Alg. 2.

To this end, we will work with the n = 200 training data in Fig. 1

and boost a binary classifier composed of pre-trained hypotheses.

Note the following: while our training data are simple (the given

data points x j are but elements of R2), the classification problem

they pose is not. First of all, the samples drawn from classes Ω1

and Ω2 are obviously not linearly separable. Second of all, our data

are slightly imbalanced; for class Ω1, there are 75 examples and,

for class Ω2, there are 125 examples. Will boosting be able to cope

with challenges like these?

AdaBoost with Pre-Trained Hypotheses

Figure 2: 36 weak models for boosting a binary classifier on the training data in Fig. 1. In each panel, the dots are the training
data and the colored regions represent class regions predicted by the corresponding model. Each model is a linear classifier
hi (x) = sign

(
w
⊺
i x − θi

)
. Thewi are ±e1/2 where e1,e2 are the standard basis vectors in R2 and the θi were drawn from an interval

[−θ ,+θ]. All models are truly weak learners as they classify at least a third of the training data incorrectly.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

· · ·

t = 7 t = 8 t = 9 t = 10 t = 11

Figure 3: Visualization of the first couple of rounds of AdaBoost on the training data in Fig. 1 with the weak models in Fig. 2.
Each panel visualizes the classifier chosen in round t . The dots represent the training data x j and their sizes are proportional
to the (updated) weight pj of x j at the end of round t .

An advantage of working with two-dimensional data is that we

can actually visualize binary classifiers for such data. For instance,

Fig. 2 depicts the setM of 36 pre-trained models hi we consider
for our example.

Each of these weak models is a binary linear classifier of the

form hi (x) = sign

(
w
⊺
i x − θi

)
and thus splits the data space R2 into

two complementary half-spaces, namely the half-space of those

x ∈ R2 for which hi (x) ≥ 0 and the half-space of those x ∈ R2 for
which hi (x) < 0. Each panel in Fig. 2 visualizes these half-spaces

in terms of an orange- and a blue region, respectively.

The figure also shows that the half-spaces or class regions pro-

duced by our given models are axis-aligned. Indeed, for each hi in
the first row, we havewi = e1 and for the hi in the second row, we

havewi = −e1 where e1 = [1, 0]⊺ denotes the first standard basis

vector inR2. For thehi in the third and fourth row, we havewi = e2
andwi = e2, respectively, where e2 = [0, 1]⊺ is the second standard
basis vector in R2. Finally, each of the threshold parameters θi were
drawn from an interval [−θ ,+θ].

Furthermore, each panel in Fig. 2 also shows the training data

we are working with. This allows us to “see” that our given models

are truly weak. For instance, the classifier in the top left panel

classifies all the examples from class Ω1 (orange dots) correctly but

all the examples from class Ω2 (blue dots) incorrectly. Its accuracy

is therefore rather low, or vice versa, its classification error is rather

high. Not all the models in Fig. 2 are as weak as the one in the top

left panel. However, even the better models in our hypothesis set

have a classification error of about 30% to 40%.

All in all, we can thus conclude that, individually, none of the

given models hi (x) can satisfactory solve our problem. So let us

boost them into a strong model H (x).
Figure 3 visualizes the outcomes of the first couple of rounds of

AdaBoost. Its panels depict which model hi was chosen in round

t . They also show the training data x j such that the size of the

respective dots is proportional to the corresponding weights pj
after their update at the end of round t .

We observe the following: if the model chosen in round t cor-
rectly classifies a point x j , its weight pj decreases. On the other

hand, if the model chosen in round t incorrectly classifies a point x j ,
its weight pj increases. The model chosen in round t + 1 attempts

to correct for mistakes made by the model chosen in round t . For

C. Bauckhage

(a) T = 25 (b) T = 50

(c) T = 100 (d) T = 200

Figure 4: Boosted classifiers after T rounds of AdaBoost.

instance, the model chosen at t = 7 mis-classifies many blue points;

the model chosen at t = 8 mis-classifies only a few blue points.

The are aspects of AdaBoost that are hard to visualize even when

working with two-dimensional data. First of all, the whole processes

of boosting with pre-trained hypotheses is incredibly fast. Second

of all, however, it usually requires more than a just a few dozen

rounds to produce a truly strong model H (x). Since visualizing all

these rounds would consume way too much space, Fig. 4 simply

shows final models for T ∈ {25, 50, 100, 200}.
Looking at this figure, we observe that 25 rounds of boosting

produced a classifier H (x) that is considerably stronger than each

of the weak hypotheses hi (x) in our model setM. However, the

boosted model after 50 rounds is even better. Eventually, the process

leads to a model such as the one after 100 rounds which then

does not change fundamentally anymore. Given that we have been

workingwith super simple axis aligned linear classifiers as our weak

models, the strong model after 100 iterations beautifully captures

the gist of our training data.

4 PRACTICE
This section presents a straightforward NumPy implementation of

the pseudo-code in Alg. 2. It is indeed so straightforward that most

of our discussion will be spent on code for pre- and post-processing

rather than on code for boosting itself.

First of all, we point out that our pseudo-code for AdaBoost with

pre-trained hypotheses is data- and model agnostic. This means

that it neither requires the training data nor the hypotheses set

as input. Rather, it solely operates on the two matrices ∆ and U
which encode how the given hypotheses perform on the given

training data. In order to run our algorithm, we therefore need to

prepare these matrices; however, this pre-processing is completely

independent of the boosting mechanism itself. In other words, our

algorithm applies to whatever kind of data and weak hypotheses

as long as matrices ∆ andU can be set up consistently.

Sticking with the practical, binary classification example we just

went through, we will therefore focus on how to set up AdaBoost

Listing 1: custom made sign function
def signum(x):

return (x >= 0) * 2 - 1

with pre-trained hypotheses for the case where these hypotheses

are linear classifiers of the form hi (x) = sign

(
w
⊺
i x − θi

)
.

In this setting, we can gather all our application specific ingredi-

ents, i.e. then training data pointsx j ∈ Rm and labelsyj ∈ {−1,+1}
aswell as thek weight vectorswi ∈ R

m
and threshold valuesθi ∈ R,

in two matrices and two vectors, namely

X =


| |

x1 · · · xn
| |

 and y =


y1
...

yn


as well as

W =


— w

⊺
1
—

...

— w
⊺
k —

 and θ =


θ1
...

θk


In NumPy, objects like these are naturally encoded in terms of

one- and two-dimensional arrays

matX = ...

vecY = ...

matW = ...

vecT = ...

and we henceforth assume that they have been set/initialized/filled

appropriately.

However, for our following practical computations to work, we

need vecY to be an array of shape 1 × n and vecT to be an array of

shape k × 1, so we better enforce this

vecY = vecY.flatten ()

vecT = vecT.reshape(k,1)

We will also need a custom made version of the sign function,

because np.sign implements

sign(x) =


−1 if x < 0

0 if x = 0

+1 if x > 0

but what we most commonly need in the context of binary linear

classification is

sign(x) =

{
−1 if x < 0

+1 if x ≥ 0

Yet, we recall that we have come cross this issues several times

before. Back then, we simply used the function in Listing 1 and we

will do so here as well.

Next, we note the following. The label which model hi predicts
for training data point x j is given by

ŷi j = hi (x j) = sign

(
w
⊺
i x j − θi

)
The predictions of this model for all training data points x1, . . . ,xn
can be gathered in a a vector

ŷi =
[
ŷi1 ŷi2 · · · ŷin

]⊺

AdaBoost with Pre-Trained Hypotheses

Continuing this line of reasoning, the prediction vectors of all

our models h1, . . . ,hk can be gathered in a matrix

ˆY =


— ŷ

⊺
1
—

...

— ŷ
⊺
k —


and the practical computation of this matrix is as easy as

matY = signum(matW @ matX - vecT)

Next, we note that the ground truth label vectory and prediction

matrix
ˆY allow for computing matrixU defied in (19). We simply

have

U = 1y⊺ ⊙ ˆY

where 1 denotes the k-dimensional vector of all ones and ⊙ is once

again the Hadamard product. Using NumPy, this expression can be

computed as

matU = vecY * matY

Once array matU is available, we can compute an array

matD = matU < 0

which implements the “anti” Kronecker delta matrix ∆ in (18). This

snippet exploits that yj ∈ {−1,+1} and ŷi j = hi (x j) ∈ {−1,+1} so
that the product yj · ŷi j equals +1 if yj and ŷi j agree and −1 if they
don’t. (Skeptical readers are encouraged to very that array matD
really implements matrix ∆ as defined in (18).)

At this point, we have everything in place to run AdaBoost in

order to determine a strong model H (x) = sign

(∑
i λi hi (x)

)
. In

fact, we recall that all we need to worry about is estimating the

appropriate coefficient vector λ ∈ Rk and so we simply call

vecL = AdaBoostPreTrained(matD , matU , tmax =100)

Our implementation of function AdaBoostPreTrained is shown
in Listing 2 and is indeed an immediate implementation of the

pseudo-code in Alg. 2. All we need to point out is that we implement

the vectors λ, p, and ϵ as NumPy arrays vecL, vecP, and vecE,
respectively. Also, the scalars l , ϵl , and α in Alg. 2 become l, e,
and a in Listing 2. That is all there is to it! Our implementation of

AdaBoost with given hypotheses really just boils down to this tiny

piece of NumPy code.

Once array vecL has been computed, we have essentially trained

a strong classifier and are basically done. However, looking back at

the example in the previous section, we should point out a quirk

of boosting with pre-trained hypotheses. Specifically, Fig. 3 seems

to suggest that it may happen that some of the given models hi (x)
are never selected into the strong ensemble H (x). If this happens,
their corresponding coefficients λi will still be 0 once boosting has

terminated.

To see if this is indeed the case, we may use

inds = np.where(vecL > 0)[0]

in order to determine the indices i of the coefficients of the mod-

els that have been selected into the strong classifier. Given inds,
we may then print these indices together with the corresponding

coefficients, for instance, using

print (*zip(inds+1, np.round(vecL[inds],3)))

Listing 2: AdaBoost with pre-trained hypotheses
def AdaBoostPreTrained(matD , matU , tmax =100):

k, n = matD.shape

vecL = np.zeros(k)
vecP = np.ones(n) / n

for t in range(tmax):
vecE = matD @ vecP

l = np.argmin(vecE)
e = vecE[l]
a = 0.5 * np.log((1-e) / e)

vecL[l] += a

vecP = vecP * np.exp(-a * matU[l])
vecP /= vecP.sum()

return vecL

When we do this for the data (and weak hypotheses) we consid-

ered in our practical example, this results in

>>> (4, 0.376) (5, 3.905) (21, 9.439)

(24, 0.9) (25, 8.188) (29, 0.333)

(30, 3.765) (31, 1.218) (33, 4.009)

(34, 0.31)

which tells us that indeed only 10 out of our 36 weak models haven

been selected into the boosted model.

Hence, in order to avoid unnecessary computations during the

application phase of our strong classifier, i.e. to avoid computations

of the form 0 · hi (x), we therefore reduce the weight matrix, the

threshold vector, and the coefficient vector to only those compo-

nents that are relevant. To this end, we use

matW = matW[inds]

vecT = vecT[inds]

vecL = vecL[inds]

Finally, to get an impression of the performance of our strong

model H (x), we may evaluate it on the training data (of course it

goes without saying that it is much much better to evaluate on

independent test data). Given everything we said and implemented

so far, we can compute the predictions of our boosted model for all

of our training data as

vecH = signum(vecL @ signum(matW @ matX - vecT))

and then compare these predictions to the ground truth labels

print (np.array_equal(vecY , vecH))

When we do this for the data (and weak hypotheses) we consid-

ered in our practical example, this results in

>>> True

which tells us that our boosted classifier has learned to classify its

training data perfectly (see also once again Fig. 4(c)).

5 SUMMARY AND OUTLOOK
This has become a rather lengthy note (and there is still an appendix

ahead of us ;-)). However, it was worth it. We had a first look at

AdaBoost in general and AdaBoost with pre-trained hypotheses in

particular. For the latter, we also presented very compact NumPy
code.

C. Bauckhage

The code we discussed in section 4 is actually the code we used

to solve the binary classification problem discussed in section 3.

Taking this as anecdotal evidence, we can conclude that AdaBoost

is a simple yet powerful machine learning tool.

Indeed, themany favorable properties of AdaBoost (ease of imple-

mentation, speed, and reliability) have been exploited in numerous

practical applications. Themost famous solution based on AdaBoost

is arguably the celebrated Viola-Jones object detector [16]. Other

use cases include systems for human-machine interaction where

the machine must be able to learn on the fly [7, 19], assisted driving

[20, 21], causality dectection in financial documents [13], and many,

many more.

Although we can now better understand the role of AdaBoost in

applications like these, there is still much left to say and study. First

of all, we can think of even more efficient implementations. These

could involve mechanisms for early stopping and more efficient

weight normalization. Second of all, we may even think of “weight-

less” boosting. Especially for the case of boosting with pre-trained

hypotheses, there are arguably simpler techniques we may use to

determine the sought after coefficients of the given weak learners.

Third of all, in the introduction of this note, we teased a connec-

tion between AdaBoost with linear classifiers and neural network

training. We definitely need to further elaborate on this.

But, most importantly, we also need to further elaborate on

AdaBoost and informed learning. That is, we need to answer the

question of where do pre-trained hypotheses come from? Indeed,

the pre-trained hypothesis we considered in our examples in this

note were not at all informed. Even though we worked with linear

classifiers, our models were so simple that we could have just as

well been using decision stumps. We can do better than this! The

fundamental questions are: How? Are there mechanisms for an

informed, i.e. problem specific, choice of pre-trained hypotheses?

All these open points and question will be addressed in further

notes. For now, we end with even more theory . . .

APPENDIX
This appendix answers several crucial questions we had to leave

open in our theoretical discussion in section 3, namely: Why and

how exactly does AdaBoost in Alg. 1 work? Why are ϵ and the αt
and pj computed the way they are? What is the rationale behind

all of this?

To begin with, we let Ht−1(x) be the linear combination of weak

models after t − 1 iterations of AdaBoost. That is, we let

Ht−1(x) = α1 h1(x) + α2 h2(x) + . . . + αt−1 ht−1(x) (22)

With this definition, the linear combination of weak models which

is produced in iteration t can then be written as

Ht (x) = Ht−1(x) + αt ht (x) (23)

Note: even for t = T , HT (x) must not be confused with the strong

model H (x) which results from running AdaBoost. This would be

H (x) = sign

(
HT (x)

)
Now, the fundamental, latent idea behind AdaBoost is that it

implicitly minimizes the following exponential loss

L(D, t) =
n∑
j=1

e−yj ·Ht (x j)
(24)

Note: we just used the terms latent and implicitly because, looking

at the pseudo-code in Alg. 1, it is not at all apparent that AdaBoost

minimizes the quantity in (24).

Yet another important, latent idea concerns the weights pj ∈ P
which feature prominently in AdaBoost. Let us assume that, at the

beginning of the t-th iteration, we have

pj =
1

Z
· e−yj ·Ht−1(x j)

(25)

Note: in the main text, we emphasized the importance of the nor-

malizing factor Z . However, in each round of AdaBoost, it remains

constant until it gets updated at the very end of said round. As a con-

stant multiplicative factor it will not impact any of the arguments

that follow. To improve readability we will therefore henceforth

drop Z from (most of) our equations.

Given everything we said so far, we can rewrite the loss which

is to be minimize in iteration t of AdaBoost as follows

L =

n∑
j=1

e−yj ·Ht (x j)
(26)

=

n∑
j=1

e−yj ·
(
Ht−1(x j)+αt ht (x j)

)
(27)

=

n∑
j=1

e−yj ·Ht−1(x j) · e−αt ·yj ·ht (x j) (28)

=

n∑
j=1

pj · e
−αt ·yj ·ht (x j)

(29)

Now it will pay off that we required yj ∈ {−1,+1} as well as
ht (x j) ∈ {−1,+1}, because:

If the predicted label ht (x j) for x j equals the corresponding

ground truth label yj , we have yj · ht (x j) = +1 and thus

e−αt ·yj ·ht (x j) = e−αt (30)

If the predicted label ht (x j) for x j differs from the corresponding

ground truth label yj , we have yj · ht (x j) = −1 and thus

e−αt ·yj ·ht (x j) = eαt (31)

These two observations therefore allow us to rewrite the loss as

L =
∑

yj=ht (x j)

pj · e
−αt +

∑
yj,ht (x j)

pj · e
αt

(32)

What follows next, is yet another clever trick: note that we may

further write

L =
∑

yj=ht (x j)

pj · e
−αt +

∑
yj,ht (x j)

pj · e
−αt

(33)

= +
∑

yj,ht (x j)

pj · e
αt −

∑
yj,ht (x j)

pj · e
−αt

(34)

from which we obtain

L =

n∑
j=1

pj · e
−αt +

∑
yj,ht (x j)

pj ·
(
eαt − e−αt

)
(35)

= e−αt
n∑
j=1

pj +
(
eαt − e−αt

) ∑
yj,ht (x j)

pj (36)

AdaBoost with Pre-Trained Hypotheses

Next, we recall that the pj are discrete probabilities which obey

n∑
j=1

pj = 1 (37)

so that

L = e−αt +
(
eαt − e−αt

) ∑
yj,ht (x j)

pj (38)

To even further simply this expression, we also recall our definition

of the “anti” Kronecker delta and observe that it allows us to write∑
yj,ht (x j)

pj =
n∑
j=1

pj · ∆
(
ht (x j),yj

)
(39)

But nowwe recognize the right hand side of (39) as the classification

error ϵ computed in line 10 of Alg. 1. All in all this is to say that

L = e−αt +
(
eαt − e−αt

)
· ϵ (40)

We therefore have the important intermediate result that the

exponential loss which ought to be minimized in iteration t of
AdaBoost depends of the classification error ϵ of the weak classifier
ht trained or selected in that iteration and on the coefficient αt that
needs to be computed in that iteration.

Which choice of αt would minimize the loss? Well, in order to

determine the optimal αt , we can compute the derivative

dL

dαt
= −e−αt +

(
eαt + e−αt

)
· ϵ = eαt ϵ + e−αt (ϵ − 1) (41)

and equate it to 0. This provide us with

eαt

e−αt
=

1 − ϵ

ϵ
(42)

⇔ e2αt =
1 − ϵ

ϵ
(43)

⇒ αt =
1

2

ln

(
1 − ϵ

ϵ

)
(44)

which is exactly what is computed in line 13 of Alg. 1.

Finally, at this stage in round t , we can extend the linear com-

bination Ht−1(x) of models selected in previous rounds by the

presently selected model to obtain Ht (x) = Ht−1(x) + αt ht (x).
Since we assumed that the weights pj at the beginning of a round
are proportional to Ht−1(x), i.e.

pj ∝ e
−yj ·Ht−1(x j)

(45)

we therefore need to update them to the form required for the next

round, i.e.

pj ∝ e
−yj ·Ht (x j) = pj · e

−αt ·yj ·ht (x j)
(46)

This is what happens in lines 16–17 of Alg. 1. To make sure that the

updated set of weights meets the condition

∑
j pj = 1, they have to

be re-normalized as in lines 18–19 ofAlg. 1.

ACKNOWLEDGMENTS
This material was produced within the Competence Center for

Machine Learning Rhine-Ruhr (ML2R) which is funded by the

Federal Ministry of Education and Research of Germany (grant no.

01IS18038C). The authors gratefully acknowledge this support.

REFERENCES
[1] J.A. Aslam. 2000. Improving Algorithms for Boosting. In Proc. COLT.
[2] Y. Freund. 2001. An Adaptive Version of the Boost by Majority Algorithm.

Machine Learning 43, 3 (2001).

[3] Y. Freund and R.E. Shapire. 1995. A Desicion-theoretic Generalization of On-line

Learning and an Application to Boosting. In Computational Learning Theory,
P. Vitanyi (Ed.). LNCS, Vol. 904. Springer.

[4] Y. Freund and R.E. Shapire. 1997. A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. J. of Computer and System Sciences 55,
1 (1997).

[5] J. Friedman, T. Hastie, and R. Tibshirani. 2000. Additive Logistic Regression: A

Statistical View of Boosting. Annals of Statistics 28, 2 (2000).
[6] J. Friedman, T. Hastie, and R. Tibshirani. 2001. Greedy Function Approximation:

A Gradient Boosting Machine. Annals of Statistics 29, 5 (2001).
[7] M. Hanheide, C. Bauckhage, and G. Sagerer. 2005. Combining Environmental

Cues & Head Gestures to Interact with Wearable Devices. In Proc. Int. Conf. on
Multimodal Interfaces.

[8] K. Hatano and M.K. Warmuth. 2003. Boosting versus Covering. In Proc. NIPS.
[9] L. Mason, J. Baxter, P. Bartlett, and M. Frean. 1999. Boosting Algorithms as

Gradient Descent. In Proc. NIPS.
[10] I. Mukherjee, C. Rudin, and R.E. Schapire. 2013. The Rate of Convergence of

AdaBoost . J. of Machine Learning Research 14, 34 (2013).

[11] M.H. Nikravan, M. Movahedan, and S. Zilles. 2021. Precision-based Boosting. In

Proc. AAAI.
[12] T.E. Oliphant. 2007. Python for Scientific Computing. Computing in Science &

Engineering 9, 3 (2007).

[13] M. Pielka, A. Ladi, C. Chapman, E. Brito, R. Ramamurthy, P. Mayer, A. Wahab, R.

Sifa, and C. Bauckhage. 2020. Using Ensemble Methods and Sequence Tagging

to Detect Causality in Financial Documents. In Proc. FinCausal.
[14] C. Rudin, I. Daubechies, and R.E. Schapire. 2003. On the Dynamics of Boosting.

In Proc. NIPS.
[15] R.E. Shapire and Y. Singer. 2001. Improved BoostingAlgorithmsUsing Confidence-

rated Predictions. Machine Learning 37, 3 (2001).

[16] P. Viola and M. Jones. 2001. Rapid Object Detection Using a Boosted Cascade of

Simple Features. In Proc. CVPR.
[17] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch,

J. Pfrommer, A. Pick, R. Ramamurthy, M. Walczak, J. Garcke, C. Bauckhage, and

J. Schuecker. 2019. Informed Machine Learning – A Taxonomy and Survey of

Integrating Knowledge into Learning Systems. arXiv:1903.12394 [stat.ML] (2019).
[18] C.Wang, Y.Wang,W. E, and R.E. Schapire. 2015. Functional Frank-Wolfe Boosting

for General Loss Functions. arXiv:1510.02558 [stat.ML] (2015).
[19] S. Wrede, M. Hanheide, C. Bauckhage, and G. Sagerer. 2004. An Active Memory

as a Model for Information Fusion. In Proc. Int. Conf. on Information Fusion.
[20] S. Zhang, C. Bauckhage, and A.B. Cremers. 2014. Informed Haar-like Features

Improve Pedestrian Detection. In Proc. CVPR.
[21] S. Zhang, C. Bauckhage, and A.B. Cremers. 2015. Efficient Pedestrian Detection

via Rectangular Features Based on a Statistical Shape Model. IEEE Trans. on
Intelligent Transportation Systems 16, 2 (2015).

https://www.ml2r.de

	Abstract
	1 Introduction
	2 Setting the Stage
	3 Theory
	3.1 ``Classical'' AdaBoost
	3.2 AdaBoost with Pre-Trained Hypotheses
	3.3 A Didactic Example

	4 Practice
	5 Summary and Outlook
	References

