
Frequent Generalized Subgraph Mining via Graph
Edit Distances
Richard Palme, Pascal Welke

Abstract
Computing the subgraphs which occur frequently in a database of labeled graphs is a fundamental
problem in data mining. Graph data is often equipped with semantic information in form of an ontology,
for example when dealing with linked data or knowledge graphs. Previous work suggests to exploit
this semantic information in order to compute frequent generalized patterns, i.e. patterns for which the
total frequency of all more specific patterns exceeds the frequency threshold. However, the problem of
computing the frequency of a generalized pattern has not yet been fully addressed. In this work, we
propose a method for computing generalized patterns which is based on the graph edit distance.

1. Introduction

Nowadays, an ever-increasing amount of graph data is collected, often in form of linked data or
knowledge graphs. Linked data, and especially knowledge graphs, often come with an ontology,
which provides background knowledge about the entities and entity relations that appear in the
dataset. Naturally, the question arises if it is possible to exploit the semantic information given
by an ontology, in order to improve the performance of data mining methods on graph data.

A common graph data mining task is to generate the set of frequent subgraphs of a graph
database. The frequent subgraph mining problem (FSM) has many applications, ranging from
database compression [1] to machine learning [2]. In order to improve the results of FSM, the
semantic information provided by a label hierarchy or taxonomy can and sometimes must be
used as background knowledge.

As an example, suppose the graphs in a database contain vertex labels such as “donkey”,
“rabbit”, “carrot” or “cabbage”, and suppose these four vertex labels do not appear frequently in
the database. If there is a label hierarchy which tells us that “donkey” and “rabbit” are herbivores,
while “carrot” and “cabbage” are vegetables, then we can exploit this semantic information in
order to find frequently occuring patterns in the database, such as “herbivore eats vegetable”.
These patterns are called generalized patterns. The problem of frequent generalized subgraph
mining has a long history [3, 4] and recently gained more traction, again [5, 6, 7].

Definition 1 (Frequent Generalized Subgraph Mining (FGSM)). We say that there is a generalized
subgraph isomorphism (GSGI) between two graphs 𝐻 and 𝐺 if 𝐺 contains a subgraph 𝐻 ′ (up to
isomorphism) s.t. 𝐻 ′ can be constructed from 𝐻 by replacing any label of 𝐻 by a more specific

Under review at SeDaMi’22 Workshop at ECML/PKDD
$ palme@cs.uni-bonn.de (R. Palme); welke@cs.uni-bonn.de (P. Welke)
� 0000-0002-2123-3781 (P. Welke)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:palme@cs.uni-bonn.de
mailto:welke@cs.uni-bonn.de
https://orcid.org/0000-0002-2123-3781
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

label w.r.t. the label hierarchy. Here, the root in the label hierarchy is the most general label. A
graph 𝐻 is a frequent generalized subgraph w.r.t. a graph database 𝐷 if there are at least 𝑡 graphs
𝐺1, . . . , 𝐺𝑡 in 𝐷 s.t. there is a GSGI between 𝐻 and 𝐺𝑖 for any 𝑖 = 1, . . . 𝑡. The FGSM problem
is then to compute the set of all frequent generalized subgraphs of 𝐷.

In order to determine the frequency of a generalized pattern, we need an algorithm for solving
the generalized subgraph isomorphism problem (GSGI). Unfortunately, to our knowledge, no
previous work gives an algorithm for the GSGI problem. A naive solution to GSGI solves a
subgraph isomorphism (SGI) problem with input 𝐻 ′ and 𝐺 for every specialization 𝐻 ′ of 𝐻 .
Since the number of specializations of 𝐻 is exponential in the size of 𝐻 , this naive solution is
not a feasible method for solving GSGI.

In this work we reduce GSGI to the graph edit distance problem (GED), thereby solving
GSGI by a single computation of a specific GED between two graphs. Subsequently, we use a
heuristic solver for GED within a frequent subgraph mining framework to enumerate frequent
generalized subgraphs of arbitrary labeled graph databases.

2. Reduction of Generalized Subgraph Isomorphism (GSGI) to
Graph Edit Distance (GED)

The graph edit distance (GED) is a measure for the dissimilarity between two labeled graphs
[8]. Two graphs 𝐻 and 𝐺 are interpreted to be dissimilar w.r.t. GED if, for any sequence of edit
operations that transforms 𝐻 into 𝐺, the cost incurred by the sequence of edit operations is
high. We remark that, like SGI and GSGI, GED is NP-hard. In fact, this follows immediately
from Eq. (1) below. However, there exist efficient heuristics to compute GED in pracice [9, 10].

Definition 2 (Graph Edit Distance). Let 𝐻 and 𝐺 be labeled graphs, let Σ be a finite label
alphabet, and let 𝜀 be a symbol which is not an element of Σ. Denoting Σ ∪ {𝜀} by Σ𝜀, we call a
function

𝑐 : Σ𝜀 × Σ𝜀 → [0,∞)

an edit cost function if
∀𝛼 ∈ Σ𝜀 : 𝑐(𝛼, 𝛼) = 0.

An edit cost function assigns an edit cost to each edit operation. Table 1 contains a comprehensive
list of all considered edit operations and their associated edit costs. An edit path 𝜋 between 𝐻
and 𝐺 is a finite sequence of edit operations (𝑜𝑖)𝑘𝑖=1 that transforms 𝐻 into a graph 𝜋(𝐻) that is
isomorphic to 𝐺. The cost incurred by 𝜋 is defined as

𝑐(𝜋) :=

𝑘∑︁
𝑖=1

𝑐(𝑜𝑖),

where 𝑐(𝑜𝑖) denotes the edit cost of the edit operation 𝑜𝑖. We denote the set of edit paths between
𝐻 and 𝐺 by Π(𝐻,𝐺), and define the graph edit distance between 𝐻 and 𝐺 as follows:

GED(𝐻,𝐺) := min
𝜋∈Π(𝐻,𝐺)

𝑐(𝜋).

Edit operation Edit cost
Insert an isolated vertex with label 𝛼 ∈ Σ 𝑐(𝜀, 𝛼)
Delete an isolated vertex 𝑢 𝑐(𝜆(𝑢), 𝜀)
Substitute the label of a vertex 𝑢 by 𝛼 ∈ Σ 𝑐(𝜆(𝑢), 𝛼)
Insert an edge with label 𝛼 ∈ Σ 𝑐(𝜀, 𝛼)
Delete an edge 𝑒 𝑐(𝜆(𝑒), 𝜀)
Substitute the label of an edge 𝑒 by 𝛼 ∈ Σ 𝑐(𝜆(𝑒), 𝛼)

Table 1
Edit operations and their associated edit costs. Deleting an edge {𝑢, 𝑣} does not delete 𝑢 or 𝑣, and
inserting an edge {𝑢, 𝑣} is only possible if 𝑢 and 𝑣 have been previously inserted or are vertices of 𝐻 .

The GED can be used to solve the subgraph isomorphism problem (SGI) by imposing the
following three constraints on the edit cost function:

∀𝛽 ∈ Σ𝜀 : 𝑐(𝜀, 𝛽) = 0 (free insertions)

∀𝛼 ∈ Σ: 𝑐(𝛼, 𝜀) > 0 (paid deletions)

∀𝛼, 𝛽 ∈ Σ: 𝑐(𝛼, 𝛽) > 0 ⇐⇒ 𝛼 ̸= 𝛽 (paid substitutions)

We call the graph edit distance between two graphs the subgraph edit distance (SGED), if the
edit cost function obeys these three constraints. For any two graphs 𝐻 and 𝐺, we get

𝐻 ⪯ 𝐺 ⇐⇒ SGED(𝐻,𝐺) = 0, (1)

where 𝐻 ⪯ 𝐺 is a shorthand for 𝐻 being subgraph isomorphic to 𝐺. Thus, the SGI problem
can be solved using the SGED problem.

Assuming the edit cost function obeys the triangle inequality in addition to the three con-
straints above, we get

𝐻 ′ ⪯ 𝐻 =⇒ SGED(𝐻 ′, 𝐺) ≤ SGED(𝐻 ′, 𝐻) + SGED(𝐻,𝐺) = SGED(𝐻,𝐺).

In other words, SGED is monotone in its first argument. Many algorithms for frequent subgraph
mining rely on the monotonicity of SGI in its first argument, and SGED also being monotone
in its first argument ensures that SGED can be used as a drop-in replacement for SGI in many
pattern mining algorithms.

To solve the generalized subgraph isomorphism problem (GSGI), we impose the following
four constraints on the edit cost function:

∀𝛽 ∈ Σ𝜀 : 𝑐(𝜀, 𝛽) = 0 (free insertions)

∀𝛼 ∈ Σ: 𝑐(𝛼, 𝜀) > 0 (paid deletions)

∀𝛼, 𝛽 ∈ Σ: 𝑐(𝛼, 𝛽) > 0 ⇐⇒ 𝛼 ̸= 𝛽 and 𝛼 is not more general than 𝛽 (paid substitutions)

∀𝛼, 𝛽 ∈ Σ: 𝑐(𝛼, 𝛽) = 0 ⇐⇒ 𝛼 = 𝛽 or 𝛼 is more general than 𝛽 (free specializations)

With these constraints, we get

GSGI(𝐻,𝐺) = true ⇐⇒ GED(𝐻,𝐺) = 0.

Thus, the GSGI problem can be solved using the GED problem with an edit cost function that
satisfies the four constraints given above. We can then use this solution to the GSGI problem in
order to solve the frequent generalized subgraph mining problem (FGSM). Alternatively, we
can impose the following four constraints on the edit cost function 𝑐:

∀𝛽 ∈ Σ𝜀 : 𝑐(𝜀, 𝛽) < ∞ (cheap insertions)

∀𝛼 ∈ Σ: 𝑐(𝛼, 𝜀) = ∞ (forbidden deletions)

∀𝛼, 𝛽 ∈ Σ: 𝑐(𝛼, 𝛽) = ∞ ⇐⇒ 𝛼 ̸= 𝛽 and 𝛼 is not more general than 𝛽 (forbidden substitutions)

∀𝛼, 𝛽 ∈ Σ: 𝑐(𝛼, 𝛽) < ∞ ⇐⇒ 𝛼 = 𝛽 or 𝛼 is more general than 𝛽 (cheap generalizations)

Then we get
GSGI(𝐻,𝐺) = true ⇐⇒ GED(𝐻,𝐺) < ∞.

3. Application to Generalized Subgraph Mining

The four constraints for the generalized subgraph edit distance leave us the freedom to choose
insertion costs and specialization costs as we wish. We can use this freedom in order to infuse
additional background knowledge into the GED computation. As an example, suppose a label
hierarchy has been computed by a hierarchical clustering of all vertex labels. Then each leaf
node in the cluster hierarchy corresponds to a label, and each non-leaf node corresponds to
a generalized label which does not appear in the database. Since the cluster hierarchy is a
dendrogram, for any generalized label 𝛼, we know the distance 𝑑(𝛼, 𝛽) between 𝛼 and any
label 𝛽 which is more specific than 𝛼.

We can infuse these distances into the GED computation as follows: We set the cost 𝑐(𝛼, 𝛽)
of substituting a generalized label 𝛼 by a more specific label 𝛽 to 𝑑(𝛼, 𝛽), while the remaining
edit costs are chosen s.t. the four constraints above are satisfied. Using these edit costs, the
collection of graph edit distances between a generalized pattern 𝐻 and all graphs 𝐺 in the
database yields an interestingness measure for 𝐻 . Large values for GED(𝐻,𝐺) indicate that 𝐻
is a rather specific pattern, while smaller values indicate that 𝐻 is a rather general pattern. Since
generalized patterns are arguably interesting if they are both frequent and specific, infusing
label distances into the GED computation yields a method for ranking the frequent generalized
subgraphs. We note that the mere frequency of generalized patterns can not be used for ranking
them, since maximally general patterns have the highest frequency while not being interesting.

In most cases, label hierarchies do not specify label distances. However, for any generalized
label 𝛼, we can always set the distance 𝑑(𝛼, 𝛽) between 𝛼 and any more specific label 𝛽 to the
length of the unique path between 𝛼 and 𝛽 in the hierarchy tree.

We implemented a frequent generalized subgraph miner by making use of the C++ library
GEDLIB [10] to compute graph edit distances. We tested our method on the MUTAG [11]
and PTC-MR datasets [12], which contain graphs representations of chemical compounds, and
which are provided in a uniform file format [13]. To compute a label hierarchy on chemical
elements, we use the inter-cluster distance between clusters of chemical elements given by
Leal et al. [14]. This inter-cluster distance has the property that many of the resulting clusters
correspond to common groups of elements. Figure 1 shows a small part of the dendrogram
which is the result of hierarchical clustering when using this distance.

Figure 1: A section of the dendrogram created by clustering chemical elements. The chosen section of
the dendrogram shows a cluster which only contains halogens.

Cl

NO2

F

NO2

L3

NO2

Figure 2: The two molecules on the left appear as subgraphs in the MUTAG database, while the graph
on the right is a generalized pattern. Both molecules are infrequent for a relative frequency threshold of
5%, while the generalized pattern is frequent w.r.t. the same frequency threshold.

Our preliminary experiments confirm that FGSM can uncover frequent patterns that are not
found by frequent subgraph mining. An example of our findings is illustrated in Figure 2.

4. Conclusion

Frequent generalized subgraph mining is a variant of graph mining which exploits the semantic
information provided by a label hierarchy. In this work, we propose a method for solving FGSM
by using graph edit distance computations. Our method imposes constraints on the edit cost
function in order to encode the background knowledge given by the label hierarchy. Since
these constraints do not fully determine the edit cost function, we are free to choose the values
for a subset of the edit costs. We have seen that this freedom of choice can be exploited to
achieve additional goals. For example, we were able to assign an interestingness measure to
each frequent generalized subgraph by choosing the values for selected substitution costs.

As an outlook, we note that edit cost functions are not restricted to model label hierarchies,
and thus graph edit distances are a powerful tool for including domain knowledge beyond label
hierarchies into graph mining procedures. While we don’t include extensive experiments in
this short article, we will make the source code of our mining algorithm publicly available.

References

[1] L. B. Holder, D. J. Cook, S. Djoko, Substucture discovery in the SUBDUE system, in: AAAI
Workshop on Knowledge Discovery in Databases, AAAI Press, 1994, pp. 169–180.

[2] M. Deshpande, M. Kuramochi, N. Wale, G. Karypis, Frequent substructure-based ap-
proaches for classifying chemical compounds, IEEE Trans. Knowl. Data Eng. 17 (2005)
1036–1050. doi:10.1109/TKDE.2005.127.

[3] A. Inokuchi, Mining generalized substructures from a set of labeled graphs, in: IEEE
International Conference on Data Mining, IEEE Computer Society, 2004, pp. 415–418.
doi:10.1109/ICDM.2004.10041.

[4] A. Cakmak, G. Özsoyoglu, Taxonomy-superimposed graph mining, in: International Con-
ference on Extending Database Technology, volume 261 of ACM International Conference
Proceeding Series, ACM, 2008, pp. 217–228. doi:10.1145/1353343.1353372.

[5] A. Faci, M. Lesot, C. Laudy, cgspan: Pattern mining in conceptual graphs, in: International
Conference on Artificial Intelligence and Soft Computing, volume 12855 of Lecture Notes in
Computer Science, Springer, 2021, pp. 149–158. doi:10.1007/978-3-030-87897-9_14.

[6] A. Petermann, G. Micale, G. Bergami, A. Pulvirenti, E. Rahm, Mining and ranking of
generalized multi-dimensional frequent subgraphs, in: International Conference on Digital
Information Management, IEEE, 2017, pp. 236–245. doi:10.1109/ICDIM.2017.8244685.

[7] T. Martin, V. Fuentes, P. Valtchev, A. B. Diallo, R. Lacroix, Generalized graph pattern
discovery in linked data with data properties and a domain ontology, in: Symposium on
Applied Computing, ACM, 2022, pp. 1890–1899. doi:10.1145/3477314.3507301.

[8] A. Sanfeliu, K. Fu, A distance measure between attributed relational graphs for pattern
recognition, IEEE Trans. Syst. Man Cybern. 13 (1983) 353–362. doi:10.1109/TSMC.1983.
6313167.

[9] D. B. Blumenthal, N. Boria, J. Gamper, S. Bougleux, L. Brun, Comparing heuris-
tics for graph edit distance computation, VLDB J. 29 (2020) 419–458. doi:10.1007/
s00778-019-00544-1.

[10] D. B. Blumenthal, S. Bougleux, J. Gamper, L. Brun, GEDLIB: A C++ library for graph edit
distance computation, in: International Workshop on Graph-Based Representations in
Pattern Recognition, volume 11510 of Lecture Notes in Computer Science, Springer, 2019,
pp. 14–24. doi:10.1007/978-3-030-20081-7_2.

[11] A. K. Debnath, R. L. L. de Compadre, G. Debnath, A. J. Shusterman, C. Hansch, Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correla-
tion with molecular orbital energies and hydrophobicity, J Med Chem 34 (1991) 786–797.
doi:10.1021/jm00106a046.

[12] C. Helma, R. D. King, S. Kramer, A. Srinivasan, The predictive toxicology challenge
2000-2001, Bioinform. 17 (2001) 107–108. doi:10.1093/bioinformatics/17.1.107.

[13] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, M. Neumann, Tudataset: A
collection of benchmark datasets for learning with graphs, in: ICML Workshop on Graph
Representation Learning and Beyond, 2020. arXiv:2007.08663.

[14] W. Leal, G. Restrepo, A. Bernal, A network study of chemical elements: From binary
compounds to chemical trends, MATCH Comm Math Comp Chem 68 (2012) 417–442.

http://dx.doi.org/10.1109/TKDE.2005.127
http://dx.doi.org/10.1109/ICDM.2004.10041
http://dx.doi.org/10.1145/1353343.1353372
http://dx.doi.org/10.1007/978-3-030-87897-9_14
http://dx.doi.org/10.1109/ICDIM.2017.8244685
http://dx.doi.org/10.1145/3477314.3507301
http://dx.doi.org/10.1109/TSMC.1983.6313167
http://dx.doi.org/10.1109/TSMC.1983.6313167
http://dx.doi.org/10.1007/s00778-019-00544-1
http://dx.doi.org/10.1007/s00778-019-00544-1
http://dx.doi.org/10.1007/978-3-030-20081-7_2
http://dx.doi.org/10.1021/jm00106a046
http://dx.doi.org/10.1093/bioinformatics/17.1.107
http://arxiv.org/abs/2007.08663

	1 Introduction
	2 Reduction of Generalized Subgraph Isomorphism (GSGI) to Graph Edit Distance (GED)
	3 Application to Generalized Subgraph Mining
	4 Conclusion

