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Abstract. We propose a new probabilistic graph kernel. It is defined
by the set of frequent subtrees generated from a small random sample
of spanning trees of the transaction graphs. In contrast to the ordinary
frequent subgraph kernel it can be computed efficiently for any arbi-
trary graphs. Due to its probabilistic nature, the embedding function
corresponding to our graph kernel is not always correct. Our empirical
results on artificial and real-world datasets, however, demonstrate that
the graph kernel we propose is much faster than other frequent pattern
based graph kernels, with only marginal loss in predictive accuracy.

1 Introduction

Over the past decade, graph kernels (see, e.g., [6]) have become a well-established
approach in graph mining for their excellent predictive performance. One of the
early graph kernels, the frequent subgraph kernel [5], is based on an explicit
embedding of the graphs into a feature space spanned by the set of all connected
subgraphs that are frequent w.r.t. the input graph database. It was shown in [5]
that remarkable predictive accuracies can be obtained with this type of graph
kernels on the molecular graphs of small pharmacological compounds.

One of the main drawbacks of frequent subgraph kernels is that the prepro-
cessing step of generating all frequent connected subgraphs is computationally
intractable [8]. Many of the practical implementations ignore this complexity
limitation, implying that such systems may become infeasible in practice even
for small datasets. For example, the general-purpose frequent subgraph mining
algorithm FSG [5] requires more than one day to compute all frequent patterns
even for small-sized datasets (50 graphs) of random sparse graphs with 25 ver-
tices on average. Approaches that do not disregard the computational limitation
mentioned above resort either to various heuristics for traversing the search space
that result in incomplete output (e.g. [3]) or restrict the input graphs to some
tractable graph class to guarantee both completeness and efficiency (e.g. [9]).

In this work we propose a new approach different from the ones above. We
present a randomized frequent subtree kernel that is not restricted to any partic-
ular graph class and is computable in time polynomial in the number of frequent
patterns generated by the algorithm. It follows from the negative complexity
result [8] on mining frequent connected subgraphs from arbitrary graphs that,
unless P = NP, such a frequent subgraph kernel can only be achieved by relaxing
the requirements. For this work, we give up the demand on completeness and



calculate a binary feature vector for each graph with the following method: (i)
We represent each input graph by a forest formed by k random spanning trees
for some small k, (ii) compute the set of subtrees frequent in the forest database
generated in step (i), and (iii) map the input graphs to the vertices of the Ham-
ming cube in the space spanned by the set of frequent subtrees calculated in
(ii). For complexity reasons, a frequent tree pattern is regarded as a subtree of a
particular graph in step (iii) only if it is a subtree of the random forest generated
for the graph. Combining the facts that a random sample of k spanning trees is
always a forest and that it can be generated in polynomial time with the posi-
tive result that frequent subtree mining in forests can be solved with polynomial
delay (see, e.g., [2,9]), we arrive at an algorithm computing the feature vector
for any graph in time polynomial in the combined size of the input database and
the set of generated tree patterns.

Regarding steps (i)–(ii), our approach is sound, but incomplete for two rea-
sons: First, the pattern language is restricted to trees. Second, some frequent
subtrees may be missed by the algorithm, as they are not necessarily frequent
w.r.t. the random forest generated in step (i). Regarding (iii), this step is sound,
but incomplete as well. We still resort to this probabilistic strategy, as decid-
ing if a tree is subgraph isomorphic to an arbitrary graph is NP-complete. Our
somewhat unusual idea is motivated by the intuition that any tree found by our
mining algorithm is not only frequent with respect to the database, but with high
probability it has a relatively high frequency also in the set of spanning trees
for each transaction graph containing it. Thus, there must be a high chance
that such a tree pattern will be detected with this method in a query graph as
well, if it is part of it.3 Hence we call our method probabilistic subtree kernel.
It is significantly different from other techniques commonly called “tree kernels”
(e.g. [10,12]), as these (i) use homomorphism instead of subgraph isomorphism
as the embedding operator and (ii) are not frequency based.

We have empirically evaluated the proposed method on random and on
benchmark molecular graph datasets. In particular, we first generated sparse
random graphs in the Erdős-Rényi model [11] and investigated the recall of the
set of frequent tree patterns for various k (i.e., number of random spanning
trees per graph), as well as for different edge factors. (Notice that precision is
always 100% for the soundness of the algorithm.) We found that at least 20%
of all frequent subtrees can be recovered from a single random spanning tree
per graph; for k = 20 the recall varies at around 90%. A similar or even better
recall could consistently be observed on different real-world molecular datasets.
Not surprisingly, our technique is faster by at least one order of magnitude from
an average edge density of around 1.6. In all of our experiments we used the
FSG frequent subgraph mining algorithm [5]. From an edge factor of around
2.0, FSG had to be aborted after one day while our algorithm required less than
three hours (for frequency threshold 10%). Using different real-world molecular
datasets, in a second step we then compared the predictive performance of our

3 We assume that the query graph has been selected from the same (unknown) prob-
ability distribution as the graphs in the input database.



probabilistic approach to that of the ordinary frequent subgraph kernel [5]. We
observed only a marginal loss in predictive performance on all datasets. In all
of these experiments k was at most 20, in accordance with the recall results on
random graphs. We found that with increasing dataset size we needed smaller
and smaller values of k to obtain a close approximation of the frequent subgraph
kernel’s predictive performance. In particular, for the NCI-HIV dataset consist-
ing of more than 40,000 molecular graphs, k = 5 sufficed. Putting together, the
empirical results suggest that a careful composition of our simple probabilistic
technique with some other fast graph kernel might result in a fast graph kernel
of high predictive performance.

The rest of the paper is organized as follows. In Section 2 we present our
algorithm with some important implementation details. Section 3 describes the
empirical evaluation of our approach and Section 4 concludes with some inter-
esting questions for further work.

2 The Probabilistic Frequent Subtree Kernel

Several graph kernels have been developed over the past decade for predictive
graph mining. A broad range of these graph kernels belong to the class of con-
volution kernels [7]. That is, the input graphs are first decomposed into certain
sets of substructures determined by some pattern language and the graph ker-
nels are then defined by the intersection kernel over such sets. Depending on the
particular choice of the substructure class (i.e., the pattern language), different
graph kernels can be defined in this way. One of the first such graph kernels
was defined by means of frequent connected subgraphs [5]. That is, the feature
space corresponding to the kernel is spanned by the set of connected graphs that
occur in at least a certain proportion of the graphs in the input database. The
first step of this approach is to generate all frequent connected subgraphs, i.e.,
to solve the following pattern mining problem:

Frequent Connected Subgraph Mining (FCSM) Problem: Given a fini-
te set D ⊆ G for some graph class G and a threshold t ∈ (0, 1], list the set
F ⊆ P of all pairwise non-isomorphic graphs from some graph class P that
are subgraph isomorphic to at least dt · |D|e graphs in D.

In what follows, G and P will be referred to as transaction and pattern classes.
The set F of frequent patterns in D naturally yields a binary vector representa-
tion for any arbitrary graph G: We map G to its characteristic vector vG over
the universe F , i.e., vG is indexed by F and for all H ∈ F , vG[H] = 1 if and only
if H is subgraph isomorphic to G. To avoid redundancies in the characteristic
vectors over F , the patterns in F are required to be pairwise non-isomorphic.

One of the main limitations of the frequent subgraph kernel [5] is the com-
putational intractability of the FCSM problem: If there is no restriction on the
transaction graphs in G and P consists of all connected graphs of G then, unless
P = NP, the FCSM problem cannot be solved in output polynomial time [8].



As our empirical results of the next section clearly indicate, this negative com-
plexity result makes the frequent subgraph kernel practically infeasible even for
small-sized datasets of small sparse graphs. To overcome this limitation, below
we propose a probabilistic frequent subtree kernel that can be calculated in time
polynomial in the combined size of G1, G2, and the set of frequent patterns for
any arbitrary graphs G1 and G2.

2.1 Probabilistic Frequent Subtrees

To achieve the goal above, we restrict the pattern language to trees and relax
the correctness constraint of the FCSM problem by giving up the requirement of
completeness relative to the constrained pattern language of trees. Just restrict-
ing the pattern language to trees is not sufficient to get rid of the computational
intractability mentioned above; mining frequent trees in arbitrary graphs is not
possible in output polynomial time, as otherwise it could solve the Hamiltonian
path problem in polynomial time [8]. To overcome this problem, we propose a
simple probabilistic approach that proved fast yet powerful enough in all of our
empirical experiments. For the sake of simplicity, we assume that the transaction
graphs are connected by noting that our algorithm can naturally be generalized
to disconnected transaction graphs.

Our approach is very simple: For each transaction graph we first generate a
forest formed by a sample of k random spanning trees for some small k, then
solve the FCSM problem for this random forest database, and finally use the
set of output patterns to define the underlying feature space. With this prob-
lem relaxation we arrive at an easy to implement and, as shown in Section 3,
practically effective frequent subgraph mining algorithm (see Algorithm 1). In
addition to the transaction database D and the frequency threshold t given in
the definition of the FCSM problem, the input contains an additional parameter
k ∈ N defining an upper bound on the number of spanning trees to be gener-
ated for each transaction graph. The algorithm starts by sampling k spanning
trees for each graph in the database. Instead of mining frequent patterns in the
input database D directly, we replace each graph G by a forest FG formed by
the vertex disjoint union of the random spanning trees generated for G. This
effectively reduces the problem of mining frequent subtrees in arbitrary graph
databases D to that of mining frequent subtrees in a database D′ consisting of
forests. A tree T is regarded to be t-frequent in this setting if and only if it is
subgraph isomorphic to at least dt · |D′|e = dt · |D|e forests in D′. As frequent
subtree mining in forest databases can be done with polynomial delay [2,9], we
arrive at an algorithm that runs in time polynomial in the combined size of D
and the set of frequent subtrees in D′.

To distinguish between the output F of the frequent subgraph problem and
the output F ′ of Algorithm 1 on D and t, we will refer to the former set as
frequent patterns and to the later one as probabilistic (subtree) patterns with
respect to a threshold t. Clearly, for any D, t, and k, the output of Algorithm 1
is a subset of the set of frequent trees in D, i.e., Algorithm 1 is sound. However,



it will not necessarily find all frequent patterns, i.e., it is not complete in gen-
eral. Thus, with this technique, on the one hand we obtain a polynomial time
algorithm that is fast for small values of k, on the other hand, however, loose a
number of frequent patterns.

A further complexity problem arises when calculating the explicit embedding
of a graph into the feature space defined above: Given a set F ′ of probabilistic
tree patterns generated by Algorithm 1 and a graph G, the embedding of G
into the feature space spanned by F ′ cannot be computed in polynomial time
(if P 6= NP). The reason is that deciding subgraph isomorphism from a tree into
an arbitrary graph is NP-complete. Therefore, we allow the embedding to be
incorrect and use the following probabilistic embedding based also on a random
sample of k spanning trees: Given a tree pattern T ∈ F ′ and a graph G,

1. use FG generated in steps 3–4 of Algorithm 1, if G ∈ D; o/w generate a
random forest FG for G as in steps 3–4 of Algorithm 1,

2. set the entry vG[T ] = 1 in the binary feature vector vG of G to 1 if and only
if T is a subgraph of FG.

Clearly, this embedding is not unique because it depends on the randomly gen-
erated forest FG. In the application context of graph kernels, the incompleteness
of Algorithm 1 and the incorrectness of the probabilistic embedding sketched
above raise two important questions:

1. How stable is the output of Algorithm 1 and what is its recall with respect
to all frequent subtrees?

2. How does our probabilistic approach influence the predictive performance of
the graph kernel obtained?

Regarding the first question, we show in the next section on artificial and real-
world chemical graph datasets that (i) the output is very stable even for k = 1
and (ii) more than 75% of the frequent patterns can be recovered by using only
ten random spanning trees per graph (i.e., for k = 10). The high stability and
recall together indicate that the probabilistic embedding of G calculated by the
above method has a small Hamming distance to the exact one defined by F .

Regarding the second question, we show on different real-world benchmark
graph datasets that our experimental results are comparable with those obtained
by the FSG algorithm [5], even for the full set of frequent subgraphs. Before
presenting these and other empirical results in Section 3, we first discuss some
implementation issues and analyse the time complexity of Algorithm 1.

2.2 Implementation Issues and Runtime Analysis

Line 3 of Algorithm 1 can be implemented using Wilson’s algorithm [13], which
has an expected runtime that is linear in the mean hitting time of a graph and
returns each spanning tree of G with the same probability. It is Θ(n3) in the
worst case, but conjectured to be much smaller for most graphs [13]. The set of
all sampled spanning trees up to isomorphism (Line 4) can be computed from



Given: A graph database D ⊆ G an integer k > 0 and an integer threshold t > 0.
Output: A set of t-frequent subtrees of D.

1: D′ := ∅
2: for all G ∈ D do
3: Sample k spanning trees of G uniformly at random
4: Add the forest FG of those trees up to isomorphism to D′

5: List all t-frequent subgraphs in D′

Algorithm 1: The Probabilistic Subtree Mining Algorithm

the set of sampled spanning trees using some canonical string representation
for trees and a prefix tree as data structure (see, e.g., [2] for more details on
canonical string representations for labeled graphs). We follow this approach to
practically reduce the runtime of the subsequent frequent subtree mining step,
as isomorphic spanning trees yield the same subtrees and can safely be omitted.
For each tree, this can be done in O (n log n) time by computing first the tree
center and then applying a canonical string algorithm for rooted trees as in [2].
These canonical strings are then stored in and retrieved from a prefix tree in
time linear in their size.

Thus, the sampling step of our algorithm runs in expected O
(
kn3

)
time. If

we do not require the spanning trees to be drawn uniformly, we can improve on
this time and achieve a deterministic O (km log n) runtime, where m denotes the
number of edges. This is achieved by choosing a random permutation of the edge
set of a graph and then applying Kruskal’s minimum spanning tree algorithm
using this edge order. It is not difficult to see that this technique can gener-
ate random spanning trees with non-uniform probability. As our experimential
results on molecular graphs of pharmacological compounds show, this has no
significant impact on the predictive performance of the graph kernel obtained.

Finally we note that for Line 5, we can use almost any one of the existing
algorithms generating frequent connected subgraphs (i.e., subtrees) from forest
databases (see, e.g., [2] for an overview on this topic).

3 Experiments

In this section we empirically evaluate our probabilistic approach on artificial and
real-world datasets. We start with artificial datasets to study various features of
the ordinary and our probabilistic approach on increasingly complex datasets.
We then evaluate the two methods on real-world datasets to complement our
results on the artificial datasets and to investigate the suitability of our graph
kernel for predictive tasks.

In all our experiments, we used FSG [5] in the version provided by the au-
thors4 to generate frequent subgraphs. In Line 5 of Algorithm 1, we also used
FSG to generate frequent subtrees. In this way, we can consistently compare the

4 http://glaros.dtc.umn.edu/gkhome/pafi/overview
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runtimes of the two methods, as none of them is affected by some specific heuris-
tic not used in the other one. However, we expect a significant improvement of
our probabilistic method over the traditional one, once a specialized tree mining
algorithm is applied. All our experiments were conducted on an Intel i7 CPU
with 3.40GHz and 16GB of RAM.

3.1 Datasets

Any general frequent subgraph mining algorithm is expected to process a broad
spectrum of graph databases. Most empirical evaluations, however, concentrate
on some particular type of graph data, mostly representing small molecules.
These graphs share certain properties, e.g. sparsity, small vertex degree, near
planarity, and, in particular, a natural set of frequent patterns corresponding to
functional groups. While all these properties (especially the last one) motivate
frequent subgraph mining in the first place, it is also important to observe the
behavior of a mining technique on data that may or may not have such prop-
erties. We therefore conducted experiments on artificial as well as on real-world
molecular datasets.

Artificial Datasets All these datasets consist of unlabeled sparse graphs of
varying number of vertices and edges that were generated in the Erdős-Rényi
random graph model [11]. The datasets generated are of different structural
complexity, where the structural complexity is defined as the expected edge
factor q = m

n (n is the number of vertices and m the number of edges). For
a given q, each graph G in the corresponding dataset is generated as follows:
We first draw the number n of vertices uniformly at random between 2
and 50, set the Erdős-Rényi edge probability parameter p = 2q

n−1 , and then
generate G on n vertices in the usual way with this p. If the resulting graph
is connected, we add it to the dataset.

MUTAG is a dataset of 188 connected compounds labeled according to their
mutagenic effect on Salmonella typhimurium. On average, each graph has
20 vertices and 22 edges.

PTC contains 344 connected molecular graphs, labeled according to the car-
cinogenicity in mice and rats. The graphs have 26 vertices and edges on
average.

NCI1, NCI109 consist of 4, 110 (resp. 4127) compounds of which 3530 (resp.
3519) are connected. Both are balanced sets of chemical molecules labeled
according to their activity against non-small cell lung cancer (resp. ovarian
cancer) cell lines. The average number of vertices is 30, the average number
of edges is 32 in both datasets5.

NCI-HIV consists of 42, 687 compounds of which 39, 337 are connected6. The
average number of vertices and edges per graph are 41 and 43, respectively.

5 MUTAG, NCI1, NCI109, and PTC were obtained from http://www.di.ens.fr/

~shervashidze/code.html.
6 http://cactus.nci.nih.gov/
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The molecules are annotated with their activity against the human immun-
odeficiency virus (HIV). In particular, they are labeled by “active” (A),
“moderately active” (M), or “inactive” (I). We consider the following three
usual binary classification problems: (AMvsI) A and M together versus I,
(AvsMI) A versus M and I, and (AvsI) A versus I where instances labeled
by M are removed.

ZINC is a subset of 8, 946, 757 (8, 946, 755 connected) so called ’Lead-Like’
molecules from the zinc database of purchasable chemical compounds7. The
molecules in this subset have a molar mass between 250g/mol and 350g/mol
and have an average number of vertices and edges 43 and 44, respectively.

3.2 Runtime

In this section, we compare the runtime of FSG and our algorithm (using FSG
as the mining subroutine) on artificial datasets and on subsets of the ZINC
dataset. We use Wilson’s method [13] to generate the random spanning trees
and report the combined time for sampling and frequent pattern generation. As
already noted, one could use a specialized frequent subtree mining algorithm
in combination with our sampling method to further increase the speedup. We
experimented with several such publicly available tree mining algorithms but,
somewhat surprisingly, they were not able to beat the speed of FSG on the tree
dataset.

Figure 1 shows the processing times for expected edge factors (q) varying
between 1.0 and 5.0. (Note the log scale used for the y-axis.) We report average
execution times over three runs for computing the set of frequent patterns and
probabilistic patterns for various numbers of sampled spanning trees (k). It turns
out that FSG is very sensible to the parameter q. In order to be able to get any
result in reasonable time, we had to restrict the number of graphs in each dataset
to 50. Still we had to terminate FSG in several cases where it took more than 24
hours (86,400s), which was consistently the case once q exceeded 1.8. Up to 20
sampled spanning trees, our probabilistic approach is always faster; for q > 1.4
it is faster even for k = 50 (more precisely, in contrast to FSG, it is able to
terminate in significantly less than a day).

Figure 2 shows the time in seconds for our algorithm with k = 1 in black
and for FSG in gray. It reports results with subsets of the ZINC dataset of
increasing size. Though FSG was able to process much larger datasets than in
the experiments with artificial datasets, our method always outperformed FSG
in runtime on all datasets and for all frequency thresholds. Furthermore, with
decreasing frequency threshold, the runtime of our method increases with a much
smaller speed. Last but not least, in contrast to our method, FSG has a clear
limitation beyond 200, 000 graphs for t = 5% and beyond 100, 000 graphs for
t = 2%.

7 http://zinc.docking.org/subsets/lead-like
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Fig. 1. Runtime of our method, compared to FSG on artificial datasets of varying
expected edge factor q. Dots over bars signal that the run was terminated after 24
hours.

3.3 Recall

As discussed in Section 2, for any graph database the pattern set F ′ found by
our algorithm is a subset of all frequent subtrees FT , which in turn is a subset
of all frequent subgraphs F . We now analyze the recall of our method, i.e. the
amount of frequent subtree patterns that are found when applying Algorithm 1

for various k and t. To this end, let R(k, t) :=
|F ′|
|FT | be the fraction of t-frequent

tree patterns that are found if Algorithm 1 selects k random spanning trees. Us-
ing the FSG algorithm, on each dataset we first compute all frequent connected
patterns, including non-tree patterns as well, and then filter out all frequent
subgraphs that are not trees.

Figure 3 shows the recallR(k, t) of our method of one run on artificial datasets
for frequency thresholds 10% and 20%. It is restricted to expected edge factors
q ≤ 1.8, as beyond this value FSG was not able to compute the full set of
frequent patterns in less than a day. Even for a single spanning tree (i.e., for
k = 1), the recall is always above 20%; in most cases actually above 40%. The
recall for k = 5 sampled spanning trees is drastically higher than for k = 1; in
fact the increase in recall between k = 5 and k = 50 is much lower. This suggests
that k = 5 might be a good compromise in the trade-off between runtime and
accuracy of our method.



Fig. 2. Runtime results in seconds for our method (black) and FSG (grey), for different
frequency thresholds. The x-values show the number of graphs in the subsets of ZINC
that were used.

For NCI-HIV and ZINC, we sample 10 subsets of 100 graphs each and re-
port the average value of R(k, t) and its standard deviation. The results on the
two datasets can be found in Table 1 for different values of k with frequency
thresholds 5%, 10%, and 20%. We have found that at least 95% of all frequent
subgraphs are trees. It can be seen as well that the fraction of the retrieved tree
patterns rapidly grows with the number of sampled spanning trees per graph.
Sampling 10 spanning trees per graph already results in around 90% recall for
the ZINC dataset and in a recall of 80% for the NCI-HIV dataset.

3.4 Stability of Probabilistic Subtree Patterns

The results of Section 3.3 above indicate that a relatively high recall of the
frequent tree patterns can be achieved on molecular graphs and our artificial
datasets, even for a very small number of random spanning trees. In this section
we report empirical results showing that the output pattern set of Algorithm 1 is
quite stable (i.e., independent runs of our probabilistic tree mining yield similar
sets of frequent patterns). To empirically demonstrate this advantageous prop-
erty, we ran Algorithm 1 several times on the same values of the parameters k
and t and observed how the union of the probabilistic tree patterns grows.

To this end, we fix two sets of graphs, each of size approximately 40, 000, as
follows: We take all connected graphs in NCI-HIV, as well as a random subset
ZINC40k of ZINC that contains 40, 000 graphs. We run Algorithm 1 10 times
for the datasets obtained with parameters k = 1 and t = 10%. Each execu-
tion results in a set F ′i of probabilistic subtree patterns, from which we define
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Fig. 3. Recall of our method on artificial graph databases with varying expected edge
factor q, for frequency thresholds 10% and 20%.

k = 1 k = 2 k = 3 k = 10 k = 20
t = 5% 20.13± 1.20 35.53± 1.34 46.48± 0.51 78.32± 0.85 91.11± 1.29

NCI-HIV t = 10% 20.26± 2.22 34.45± 1.42 45.40± 1.59 79.94± 1.82 92.44± 1.34
t = 20% 24.45± 1.38 39.76± 1.68 50.41± 1.14 83.38± 1.40 94.72± 1.31

t = 5% 36.80± 0.87 56.70± 1.65 68.42± 0.94 92.50± 0.45 97.92± 0.55
ZINC t = 10% 32.77± 1.89 51.36± 1.84 64.47± 1.40 92.49± 1.18 86.70± 22.83

t = 20% 31.03± 2.59 48.99± 3.05 61.41± 3.41 90.53± 1.28 97.89± 0.40

Table 1. Recall with standard deviation of the probabilistic tree patterns on the NCI-
HIV and ZINC datasets for frequency thresholds 5%, 10%, and 20%

Ui =
⋃i

j=0 F
′
j with F ′0 := ∅. Table 2 reports |F ′i \ Ui−1|, i.e., the number of new

probabilistic subtree patterns found in iteration i for i = 1, . . . , 10 on the left.
For an initial number of 3, 920 (NCI-HIV) and 9, 898 (ZINC40k) probabilistic
patterns, the number of newly discovered patterns drops to at most 22 for the
following iterations.

We observed this behavior consistently on the artificial graphs (over all ob-
served edge factors, all numbers of sampled spanning trees, and all frequency
thresholds). Due to lack of space, Table 2 only shows the results for t = 10%,
k = 10, and 5 iterations on the right. As in the evaluation in Section 3.3, each
artificial dataset consists of 50 graphs.

These results together show, that the generated feature set does not depend
too much on the particular spanning trees selected at random. Overall, we have
found that independent runs of our algorithm yield similar feature sets on the
same data. This observation, combined with the remarkable recall results of the
previous section, is essential for our kernel; high recall and stability together indi-



Iteration 1 2 3 4 5 6 7 8 9 10

NCI-HIV 3920 20 5 10 14 7 2 6 7 2
ZINC40k 9898 18 17 11 10 22 7 7 9 1

Iteration 1 2 3 4 5

q = 1.0 692 2 5 8 3
q = 1.2 750 2 0 0 11
q = 1.4 806 18 0 0 0
q = 1.6 824 1 0 0 0
q = 1.8 824 2 0 0 0
q = 2.0 850 0 0 1 0
q = 3.0 814 26 1 4 0
q = 5.0 822 4 0 0 20

Table 2. Repetitions of the experiment with t = 10% and k = 1 sampled trees on
NCI-HIV and ZINC (left), and k = 10 for random graphs with different edge factors q
(right). The numbers reported are the number of probabilistic patterns that were not
in the union of all probabilistic patterns found up to the current iteration.

cate that the predictive performance of the (computationally intractable) exact
frequent subtree kernel can closely be approximated by our (computationally
feasible) probabilistic frequent subtree kernel even for small values of k.

3.5 Predictive Performance

In this section we show that the predictive performance of the probabilistic sub-
tree kernel compares favorably with that of the frequent subgraph kernel. We
deliberately consider the more expressive complete output of FSG, including also
cyclic patterns, because we compare the runtime of our method to that of FSG
needed to compute all frequent subgraphs. We choose, as does most related
work, a wrapper method and report the achieved area under the ROC-curve
(AUC) of a well trained support vector machine (SVM) [4]. To this end, we
consider the seven binary classification problems described in Section 3.1. We
compare the predictive performance of (i) the frequent subgraph kernel com-
puted by FSG [5] with that of (ii) the probabilistic frequent subtree kernel for
different k and for different frequency thresholds. For (ii), we use only the re-
sults with Wilson’s random spanning tree sampling algorithm [13]; we obtained
nearly identical accuracy and runtime results with the greedy sampling algo-
rithm based on Kruskal’s method. For our evaluation, we use the SVM provided
by the libSVM package [1] with a radial basis function kernel.

We repeat Algorithm 1 four times using different sets of sampled trees and
report the average and standard deviation of AUC values from a 3-fold cross
validation for each resulting feature set. The same procedure is applied to the
frequent subgraph pattern set, here we use a different splitting for the cross
validation in each run.

Table 3 shows the results for the classification problems on MUTAG, NCI1,
NCI109, and PTC. We can see that the frequent subgraph kernel outperforms
our probabilistic subtree kernels for all frequency thresholds and all choices of
k. However, if we select k = 20 spanning trees, the accuracy is fairly close to



t k MUTAG PTC NCI1 NCI109

1% 1 81.72± 1.22 56.20± 1.54 79.73± 0.26 78.64± 0.20
1% 2 82.98± 0.46 57.03± 0.88 81.74± 0.22 80.89± 0.15
1% 5 85.47± 0.80 59.18± 0.54 83.45± 0.12 83.07± 0.14
1% 10 88.33± 0.30 59.67± 0.26 84.09± 0.10 83.79± 0.15
1% 20 89.32± 0.14 60.10± 0.09 84.43± 0.06 84.23± 0.05
1% FSG 91.18± 0.46 63.62± 1.01 86.87± 0.10 86.84± 0.09

5% 1 80.79± 1.26 54.92± 1.69 76.90± 0.40 75.67± 0.23
5% 2 82.30± 0.41 55.05± 1.25 78.87± 0.17 77.73± 0.17
5% 5 84.20± 0.90 56.12± 0.67 80.75± 0.17 80.31± 0.16
5% 10 86.35± 0.15 56.14± 0.29 81.60± 0.10 81.12± 0.13
5% 20 87.66± 0.26 56.34± 0.19 82.15± 0.05 81.73± 0.05
5% FSG 89.01± 0.64 58.00± 1.86 83.76± 0.13 83.86± 0.06

10% 1 80.99± 1.23 54.05± 1.84 75.41± 0.43 74.10± 0.28
10% 2 82.60± 0.44 54.35± 1.48 77.28± 0.22 76.08± 0.17
10% 5 84.22± 0.86 54.17± 0.87 79.09± 0.16 78.05± 0.14
10% 10 86.23± 0.16 53.94± 0.28 79.95± 0.09 79.01± 0.10
10% 20 86.95± 0.11 53.99± 0.19 80.44± 0.05 79.61± 0.07
10% FSG 87.34± 0.46 56.76± 1.96 81.66± 0.10 81.55± 0.24

20% 1 81.02± 1.43 53.36± 2.16 72.78± 0.35 70.84± 0.32
20% 2 83.12± 0.53 53.05± 0.79 74.94± 0.22 73.77± 0.17
20% 5 84.68± 0.82 52.34± 0.89 77.05± 0.15 76.13± 0.11
20% 10 86.92± 0.16 51.86± 0.52 77.79± 0.06 76.90± 0.10
20% 20 88.10± 0.06 51.97± 0.22 78.15± 0.06 77.33± 0.08
20% FSG 88.36± 0.00 55.82± 2.59 77.41± 0.09 77.92± 0.02

Table 3. AUC values [%] of an SVM classifier on MUTAG, NCI1, NCI109, and PTC
for frequency thresholds t between 1% and 20% when using features generated by FSG
and our method for k ∈ {1, 2, 5, 10, 20}.

that of the exact frequent subtree kernel for all datasets and for all frequency
thresholds. Furthermore, the results suggest that we can achieve or perhaps
even increase the predictive accuracy of the exact frequent subgraph kernel at a
certain frequency threshold t by using the probabilistic frequent subtree kernel
with parameters k = 20 and frequency threshold t/2. It is also worth noting that
the increase of accuracy slows down in the function of k; the gain of moving from
1 to 5 spanning trees is much larger than that from 5 to 10 on all datasets except
MUTAG, where the second increase is comparable to the first. We assume that
this behavior on MUTAG is due to the small number of molecules in the dataset.

The results on NCI-HIV are presented in Table 4. On the one hand, one can
see that from a frequency threshold of 10%, the results with the frequent sub-
graph kernel are more stable than those with the probabilistic frequent subtree
kernel on all three problems. Though the frequent subgraph kernel outperforms
the probabilistic frequent subtree kernel on the same frequency threshold, the
difference seems marginal once we compare the best results on each problem,



t k AvsI AMvsI AvsMI

5% FSG o.o.m o.o.m o.o.m
5% 1 89.27± 0.20 72.35± 0.23 88.23± 0.24
5% 2 89.94± 0.12 74.09± 0.69 89.09± 0.74
5% 5 91.17± 0.13 75.65± 0.27 90.63± 0.17

10% FSG 91.31± 0.38 75.29± 0.24 90.82± 0.31
10% 1 88.53± 0.81 71.32± 0.54 87.45± 1.18
10% 2 88.28± 1.51 71.09± 0.21 87.29± 0.62
10% 5 91.11± 0.23 74.30± 0.18 90.27± 0.08

20% FSG 91.35± 0.39 74.24± 0.26 90.57± 0.17
20% 1 86.75± 0.76 68.55± 0.73 86.00± 0.74
20% 2 86.40± 1.00 68.79± 0.61 85.79± 0.74
20% 5 90.29± 0.28 73.17± 0.56 90.27± 0.53

Table 4. Average AUC values for the three learning problems on the NCI-HIV bench-
mark dataset for the frequent subgraph kernel and the probabilistic frequent subtree
kernel for k = 1, 2 and for different frequency thresholds.

especially in light of the runtime benefits presented above. On the other hand,
however, for the frequent subgraph kernel, the results could be calculated only
for t = 10%, while for the probabilistic frequent subtree kernel we obtained the
result in half of the time for t = 5%. For this frequency threshold, FSG was
unable to produce any result because it ran out of memory. For larger frequency
thresholds, we had difficulties with training the SVM using all frequent patterns
because of its excessive memory usage. These observations clearly show the lim-
itation of the frequent subgraph kernel over the probabilistic frequent subtree
kernel when the predictive performance required can be achieved only for low
frequency thresholds. Finally we note that there is no improvement when sam-
pling two instead of one spanning tree per graph, but a drastic increase when
increasing k to 5. This result fits well with the evaluation of our method on the
artificial datasets.

4 Conclusion and Future Work

We have presented a kernel for graph structured data that is based on proba-
bilistic subtree patterns, i.e., on frequent subtrees in a forest database obtained
by randomly selecting k spanning trees for each transaction graph in the input
database and for some small value of k. Our empirical results on various random
graph datasets generated in the Erdős-Rényi model show that even for small
values of k (k ≤ 20), the output of the probabilistic frequent subtree mining
algorithm is of high recall and stability. This implies that the predictive perfor-
mance of the corresponding probabilistic frequent subtree kernel must closely
approximate to that of the exact frequent subtree kernel. Runtime comparisons
with the FSG frequent subgraph mining algorithm clearly demonstrate the su-
periority of our probabilistic approach; the speed of the probabilistic frequent
subtree mining algorithm is faster by at least one order of magnitude.



Our empirical results on various real-world benchmark graph datasets show
that the probabilistic feature space considered is expressive enough in terms of
predictive performance compared to that of the ordinary frequent subgraph ker-
nel. Furthermore, our graph kernel is not only faster than the frequent subgraph
kernel, but has a much smaller memory footprint in all stages.

We are currently working on some formal properties of the proposed method,
e.g., on probabilistic guarantees for (t1, t2)-frequent subtrees where t1 is a fre-
quency threshold for a tree pattern within the set of spanning trees of a graph,
whereas t2 within the database. These results will then be turned into an algo-
rithm that, for a given confidence value δ specified by the user, generates each
frequent subtree with probability at least δ. We are also considering the design
and implementation of a frequent subtree mining algorithm for unlabeled free
trees that is able to effectively process massive forest transaction datasets.

One of the strengths of our method is that it is not restricted to any particular
graph class. This advantageous property allows us to empirically investigate
the proposed graph kernel on more complicated graph classes beyond molecular
graphs, such as the k-neighborhood graphs of the web graph or RDF graphs.
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