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Abstract
We study a recently introduced adaptation of Tukey depth to graphs and discuss its algorithmic properties
and potential applications to mining and learning with graphs. In particular, since it is NP-hard to compute
the Tukey depth of a node, as a first contribution we provide a simple heuristic based on maximal closed
set separation in graphs and show empirically on different graph datasets that its approximation error is
small. Our second contribution is concerned with geodesic core-periphery decompositions of graphs. We
show empirically that the geodesic core of a graph consists of those nodes that have a high Tukey depth.
This information allows for a parameterized deterministic definition of the geodesic core of a graph.
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1. Introduction

Centrality measures are of high importance in data analysis, as they typically capture the
elements’ “importance” quantitatively. Of course, the meaning of importance depends on the
choice of the particular centrality measure. Different types of centrality measures have been
introduced for networks (see, e.g., [1]), including degree centrality, eigenvector centrality, Katz
centrality, closeness centrality, betweenness centrality, page rank, and hubs and authorities. In
Fig. 1 we present a graphical illustration of some of these centrality measures for some small
graphs for a visual comparison.

A relatively new centrality measure, the graph Tukey depth, has been introduced in [3]. It is
based on the the original notion of Tukey depth that is defined over finite subsets of R𝑑 [4, 5].
Informally speaking, the semantics of Tukey depth is as follows: An element 𝑒 has high Tukey
depth if it is “hard” to separate 𝑒 from the rest of the finite ground set using separating hyper-
planes only. Conversely, an element has low Tukey depth if it is “easy” to separate 𝑒 from the
rest of the set. In this context “hard” resp. “easy” means that the half-space bounded by the
separating hyper-plane that contains 𝑒 contains many resp. a few other elements of the finite
ground set. Thus the elements’ “importance” defined by Tukey depth relies on the possibility to
separate it from other elements. This, however, directly connects the Tukey depth to machine
learning approaches that are based on hyper-plane separations [6, 7]. For R𝑑 and in other more
general metric spaces [8], Tukey depth has been studied in the context of machine learning, in
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Figure 1: The Degree Centrality, Closeness Centrality, Betweenness Centrality and Tukey Depth of nodes
in graphs selected from different graph datasets [2]. The centrality (resp. depth) values are normalized
(i.e, mapped to the interval [0, 1]) by their maximum values in the graph. In particular, nodes of the
smallest (resp. highest) centrality values are denoted by yellow (resp. blue).

particular, for object classification [9]. In the case of learning linear classifiers, it is shown in
[10] that the Tukey median, i.e., the points with the highest depth, are related to the Bayes point.

An advantage of Tukey depth over other measures is that the exact geometric position of
points in R𝑑 is not relevant for their depth. Thus, the Tukey depth is relatively stable regarding
outliers and is therefore used for outlier detection [11, 12]. Moreover, as Tukey depth relies
on separations it is possible to adapt it to other domains that allow hyper-plane respectively
half-space separations. This is how the original Tukey depth is adapted to geodesic closure
systems over graphs [3]. The exact notions of graph Tukey depth and geodesic closures can be
found in Sec. 2.

Similarly to the fact that the computation of the Tukey depth in R𝑑 is NP-hard [13], it is also
NP-hard to compute the graph Tukey depth of a node [3]. Motivated by this negative result,
one of our main contributions is a heuristic algorithm for approximating graph Tukey depth. It
runs in time polynomial in the size of the input graph and approximates the Tukey depth of
a node with one-sided error by overestimating it. Our experimental results with small graphs
clearly demonstrate that the approximation is close to the exact Tukey depth, by noting that for
larger graphs we were not able to evaluate the approximation performance of our algorithm, as



it was not possible to calculate the exact Tukey depth in practically feasible time.
Our heuristic is based on our greedy algorithm designed in [14] for solving the more general

maximal closed set separation (MCSS) problem. In the particular case of graphs, the problem is as
follows: Given two subsets 𝐴,𝐵 of the node set of a graph, find two (inclusion) maximal disjoint
geodesically closed node sets that separate 𝐴 and 𝐵 from each other, i.e., that particularly
contain 𝐴 resp. 𝐵. As maximal disjoint closed sets provide a separation of elements it is
therefore natural to ask the following question: Is there a connection between graph Tukey depth
and node separation with geodesically closed node sets? We give an affirmative answer to this
question by showing experimentally that solving the MCSS problem gives a good approximation
quality of the exact Tukey depth in case of small graph datasets. This mainly relies on the
following fact: For any set containing at least one node of high Tukey depth, there exists no
large disjoint closed set.

It follows from the definition of graph Tukey depth that it is related to other concepts based
on geodesic convexity. One of these notions is the recent probabilistic definition of geodesic
core-periphery decomposition of graphs. It was introduced in [15] and studied in [15, 16, 17, 18].
Hence, our second question is concerned with the following problem: Is there a connection
between graph Tukey depth and geodesic core-periphery decompositions? The geodesic core-
periphery decomposition breaks up some types of graphs (including interaction graphs such as
social networks) into a dense core and a sparse “surrounding” periphery [15] (see Fig. 3 for a
visual example). While some graphs (e.g., Erdős-Rényi, Barabási-Albert, and Watts-Strogatz
random graphs) seem to have no periphery, others (e.g., trees and fully connected graphs)
seem to have no core. Since this behavior is not well-understood up to now we will use the
Tukey depth to find out what is really happening. It seems that the geodesic core of a graph
consists of those nodes in the graph that are of high Tukey depth (see Fig. 4 for some examples).
This observation allows for a parameterized deterministic definition of the cores. That is, the
core of a graph can be defined by those nodes that have a Tukey depth greater than a user
specified threshold. Our empirical results clearly demonstrate that using the right threshold,
the probabilistic definition of cores in [15] coincides with our deterministic one.

The rest of the paper is organized as follows. In Sec. 2 we first collect necessary notions and
notations. In Sec. 3 we present our heuristic for approximating the Tukey depth and evaluate it
empirically on small graph datasets. Sec. 4 contains some examples showing that graph Tukey
depth is strongly related to existing mining and learning algorithms on graphs that rely on
graph geodesic convexity. Finally, in Sec. 5 we mention some open questions for future research.

2. Preliminaries

In this section, we collect the necessary notions and fix the notation. For a graph 𝐺 = (𝑉,𝐸),
𝑉 (𝐺) and 𝐸(𝐺) denote the set 𝑉 of nodes and the set 𝐸 of edges, and 𝑛 and 𝑚 stands for
𝑛 = |𝑉 (𝐺)| and 𝑚 = |𝐸|, respectively. Unless otherwise stated, by graphs we always mean
undirected graphs without loops and multi-edges. For any 𝑢, 𝑣 ∈ 𝑉 (𝐺), the (geodesic) interval
[𝑢, 𝑣] is the set of all nodes on all shortest paths between 𝑢 and 𝑣 (see Fig. 2a for an example). A
set of nodes 𝑋 ⊆ 𝑉 (𝐺) is called (geodesically) closed iff for all 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑢, 𝑣 ∈ 𝑋 implies
[𝑢, 𝑣] ⊆ 𝑋 . The closure 𝜌(𝑋) of a set 𝑋 ⊆ 𝑉 (𝐺) is the smallest closed set containing 𝑋 (see
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Figure 2: This figure shows (a) the geodesic interval [𝑢, 𝑣], i.e., the nodes on all shortest paths between
𝑢, 𝑣 (blue) and (b) the geodesic closure 𝜌({𝑢, 𝑣}), i.e., the smallest set of nodes that contains 𝑢, 𝑣 and all
nodes on all shortest paths between arbitrary node pairs of the set (red).

Fig. 2b for an example of 𝜌({𝑢, 𝑣})).

Graph Tukey Depth For a graph 𝐺 the Tukey depth of a node 𝑣 ∈ 𝑉 (𝐺) is defined as
follows [3]: Let 𝐶 ⊂ 𝑉 (𝐺) be a closed set of maximum cardinality such that 𝑣 /∈ 𝐶 . The Tukey
depth of 𝑣, denoted by td(𝑣) is defined by td(𝑣) = |𝑉 (𝐺)| − |𝐶|. The definition implies that
the larger a closed set which does not contain 𝑣, the smaller its depth is.

Geodesic Cores Up to now, geodesic cores [15] are defined probabilistically only. Informally,
the geodesic core of a graph consists of those nodes which are contained in “every” geodesic
closed set that is generated by a small number of random nodes. Of course, the core defined
in this way can be empty, but it turns out that this is not the case for interaction graphs (e.g.
social networks) [15]. Adapting the definition in [15] slightly, we define the geodesic core
of a graph 𝐺, denoted by 𝒞 as follows. Let 𝑋1, 𝑋2, . . . be a sequence of sets where each set
consists of 𝑘 > 0 nodes selected independently and uniformly at random from 𝑉 (𝐺). Then
𝒞 =

⋂︀𝑖
𝑗=1 𝜌(𝑋𝑗), where 𝑖 is the smallest integer satisfying

⋂︀𝑖
𝑗=1 𝜌(𝑋𝑗) =

⋂︀𝑖+1
𝑗=1 𝜌(𝑋𝑗) is the

core of 𝐺. Obviously, this definition is not deterministic since different choices of 𝑋𝑗 and of 𝑘
can lead to different cores. Nevertheless, the experiments in [16] with large real-world networks
show that for 𝑘 ≈ 10, the core (if it exists) does not depend on the particular choice of the
generator elements. The core-periphery decomposition of a graph is composed of the subgraph
induced by the core nodes and that by the remaining nodes, called periphery. In Fig. 3 we give a
visual example of the core-periphery decomposition of the CA-GrQc network [19]1.

MCSS problem for Graphs We present here the MCSS problem restricted to geodesic
closures over graphs (see [14] for the generic definition). Given a graph 𝐺 = (𝑉,𝐸) and
two node sets 𝐴,𝐵 ⊆ 𝑉 (𝐺) then the MCSS problem is to find two geodesic closed sets
𝐴′, 𝐵′ ⊆ 𝑉 (𝐺) with 𝐴′ ∩ 𝐵′ = ∅ and 𝐴 ⊆ 𝐴′, 𝐵 ⊆ 𝐵′ that are maximal, i.e., there exist no
proper supersets of 𝐴′ resp. 𝐵′ that fulfill the above properties.

3. Approximating the Tukey Depth

Motivated by the negative complexity result concerning the calculation of Tukey depth, in
Sec. 3.1 below we first propose a heuristic based on the maximal closed set separation (MCSS)

1This network is build by the co-authorships in the general relativity and quantum cosmology community.



(a) Entire Network (b) (Geodesic) Core (c) Periphery

Figure 3: Example of a geodesic core-periphery decomposition (c.f. [16]) (a) the CA-GrQc network [19]
with core in orange and periphery in blue, (b) its (geodesic) core, (c) its periphery.

algorithm in [14] that solves the MCSS problem (Sec. 2). It approximates Tukey depths with
one-sided error. We then show experimentally on different types of small graphs that the results
obtained by our heuristic are fairly close to the exact ones. Furthermore, our algorithm is, even
on small graphs, up to 200 times faster than the exact one (Sec. 3.2). It is important to emphasize
that it was not possible to calculate the exact Tukey depths for larger graphs in a feasible time.

3.1. The Heuristic

Recall that the exact Tukey depth of a node 𝑣 is defined by td(𝑣) := |𝑉 (𝐺)| − |𝐶|, where |𝐶| is
the maximum cardinality of a closed set 𝐶 not containing 𝑣. It can be computed exactly using
an integer linear program (see [3] for the details). The computationally hard part of the problem
is to find a closed set of maximum size. Our heuristic addresses this problem by considering
an inclusion maximal closed set only, instead of a maximum sized closed set. This relaxation,
which distorts of course the exact value of Tukey depth, allows us to apply the efficient greedy
algorithm proposed in [14] for solving the maximal closed separation problem. In what follows,
for any 𝑣 ∈ 𝑉 (𝐺), ̂︀td(𝑣) denotes the approximation of td(𝑣) obtained with our heuristic.

Given a graph 𝐺, the rough idea to approximate the Tukey depth of a node 𝑣 ∈ 𝑉 (𝐺) is to
find an inclusion maximal geodesically closed set 𝐶 ⊆ 𝑉 (𝐺) with 𝑣 /∈ 𝐶 . Such a set 𝐶 can be
found by applying the MCSS algorithm [14] with nodes 𝑣, 𝑣′ as input. Then the output of the
algorithm is a solution to the MCSS problem, i.e., it consists of two node sets 𝐻𝑣, 𝐻𝑣′ ⊆ 𝑉 (𝐺)
with 𝑣 ∈ 𝐻𝑣 and 𝑣′ ∈ 𝐻𝑣′ that are disjoint, closed, and inclusion maximal concerning these
properties. That is, there exists no proper supersets of 𝐻𝑣, 𝐻𝑣′ with the same properties. The
Tukey depth can then be approximated using the cardinalities of 𝐻𝑣 resp. 𝐻𝑣′ . For a fixed node
𝑣, the result depends on the particular choice of 𝑣′. To improve the approximation quality, we
therefore call the MCSS algorithm for each node 𝑣 several times with different nodes 𝑣′ ̸= 𝑣.

The pseudo-code of the above heuristic is given in Alg. 1. In Line 1 we initialize the Tukey
depth of all nodes in 𝐺 by setting them to the maximum possible value, i.e., to |𝑉 (𝐺)|. We repeat



Algorithm 1: Approximation of Graph Tukey Depth
Input :graph 𝐺
Output :approximation ̂︀td(𝑣) of td(𝑣) for all 𝑣 ∈ 𝑉 (𝐺)

1 ̂︀td(𝑣)←− |𝑉 (𝐺)| for all 𝑣 ∈ 𝑉 (𝐺);
2 for 𝑣 ∈ 𝑉 (𝐺) do
3 for 𝑣′ ∈ Γ(𝑣) do
4 𝐻𝑣′ , 𝐻𝑣 = 𝑀𝐶𝑆𝑆({𝑣′}, {𝑣});
5 for 𝑥 ∈ 𝑉 (𝐺) do
6 if 𝑥 ̸∈ 𝐻𝑣′ then
7 ̂︀td(𝑥) = min{ ̂︀td(𝑥), |𝑉 (𝐺)| − |𝐻𝑣′ |};
8 if 𝑥 ̸∈ 𝐻𝑣 then
9 ̂︀td(𝑥) = min{ ̂︀td(𝑥), |𝑉 (𝐺)| − |𝐻𝑣|};

10 return ̂︀td(𝑣) for all 𝑣 ∈ 𝑉 (𝐺)

the procedure described above for all nodes 𝑣 ∈ 𝑉 (𝐺) and all their neighbors 𝑣′ ∈ Γ(𝑣) (see the
for-loops in Line 2 and 3). In this way we solve the MCSS problem for all input sets {𝑣}, {𝑣′}, i.e.,
we separate 𝑣 from all its neighbors 𝑣′ by maximal disjoint closed sets 𝐻𝑣, 𝐻𝑣′ (see Line 4). Note
that the Tukey depth of a node 𝑥 is based on closed set of maximum cardinality not containing
𝑥. Thus, that assuming the node 𝑥 does not lie in the set 𝐻𝑣 then the cardinality of 𝐻𝑣 is smaller
or equal than a closed set of maximum cardinality not containing 𝑥. Hence, we can update the
current Tukey depth approximation of all graph nodes 𝑥 ∈ 𝑉 (𝐺) as follows: Take the minimum
over the old and the new approximation which is the cardinality of 𝑉 (𝐺) ∖𝐻𝑣 if 𝑥 /∈ 𝐻𝑣 or
𝑉 (𝐺) ∖𝐻𝑣′ if 𝑥 /∈ 𝐻𝑣′ (see Line 7 and Line 9).

By construction, Alg. 1 finds only maximal and not maximum closed sets, resulting in an
one-sided error in the estimate of Tukey depths. This is formulated in the proposition below.

Proposition 1. Alg. 1 overestimates the Tukey depth, i.e., for the output ̂︀td(𝑣) returned by Alg. 1
we have ̂︀td(𝑣) ≥ td(𝑣), for all 𝑣 ∈ 𝑉 (𝐺).

Regarding the runtime of Alg. 1, note that the inner for loop starting with Line 4 is executed
𝑂 (𝑚) times because we iterate over all neighbors (i.e. all edges are considered twice). The
runtime of the inner loop (Lines 3–9) is dominated by the MCSS algorithm which calls the
closure operator at most 𝑂 (𝑛) times [14]. Using that the geodesic closure can be determined in
time 𝒪(𝑚 · 𝑛) [20] we have the following result for the total runtime of Alg. 1:

Proposition 2. Alg. 1 outputs an upper bound of the Tukey depth for all nodes of 𝐺 in𝒪(𝑚2 ·𝑛2)
time.

The runtime of the approximation algorithm can be improved by considering for each node 𝑣
a fixed number of distinct nodes 𝑣′, or by considering a fixed subset 𝑊 ⊆ 𝑉 (𝐺), instead of the
whole node set 𝑉 (𝐺) in the outer loop (see Lines 2–9). It is left to further research to analyze
how these changes affect the quality of the approximation performance.



3.2. Experimental Evaluation

In this section we empirically evaluate the approximation quality and runtime of Alg. 1 on
datasets containing small graphs2. Regarding the approximation quality, we compare the results
obtained by our algorithm to the exact Tukey depths computed with the algorithm in [3]. For
the evaluation we consider 19 graph datasets of different types (small molecules, small graphs
from bioinformatics and computer vision, and small social networks) from [2] (see columns 2–4
of Tab. 1 for the number of graphs and their average number of nodes and edges). The average
size of the graphs ranges from 14 (PTC_MM) up to 82 (OHSU ); their average edge numbers from
14 to 200. The reason for considering small graphs only is that the exact algorithm from [3]
was unable to calculate the Tukey depth for larger graphs in less than one day (see the last two
columns). For practical reasons, we removed all disconnected graphs from the original datasets,
by noting that our heuristic works for disconnected graphs as well.

The results are presented in Tab. 1. It contains the approximation qualities measured in
different ways (columns 5–10) and the runtime of the exact (column 11) and our heuristic
algorithm (column 12). The datasets are sorted according to their absolute approximation error
(column 5 of Tab. 1), i.e., the sum of all differences between the approximation and the exact
Tukey depth over all nodes and all graphs in the dataset.

Regarding the absolute error, our approximation results are equal to the exact Tukey depths
for 5 out of the 19 datasets, while their computation was faster by a factor of up to 100 (see
row PTC_MM). Our algorithm has the largest absolute error of 4155 on the COIL-DEL graphs,
by noting that this dataset consists of 3900 graphs. Hence, the error per graph is only slightly
above one. Additionally, we look at the relative errors (column 6), i.e., the absolute error divided
by the sum of all depths. We use this measure to validate that our algorithm performs very
well, by noting that the relative errors are below 4 · 10−3 for all graph datasets. The per node
error (column 7) is the average error our algorithm makes per node, while the per graph error
(column 8) is the error it has on average per graph. Regarding the per node error, the worst case
is for the COIL-DEL dataset (last row) with an average error of 0.05. For the per graph error, the
worst result has been obtained for the OHSU dataset, where the approximation overestimates
the sum of all node depths by 1.65 per graph on average. This shows that our approximation
algorithm performs very well, especially, if considering the averages over the datasets.

Finally, we studied also the worst case approximations for nodes and graphs. In particular, the
columns Max. Node Error resp. Max. Graph Error denote the maximum error of the algorithm
on single nodes resp. single graphs. The results show that there is a very low error of at most 3
per node for 13 out of the 19 datasets. For three graph datasets, the maximum error per node
is at most 7 and we have a maximum error between 11 and 19 in three cases. Regarding the
maximum error per graph, a similar behavior can be observed by noting that except for OHSU
and Peking_1, the maximum node errors and maximum graph errors are close to each other. This
implies that there are only a few nodes with a high approximation error. It is an interesting
question to pinpoint the properties of such nodes and graphs that are responsible for the high
approximation errors. The last two columns show the runtimes of the two algorithms. Our
algorithm (last column) is faster than the exact one by at least one order of magnitude.

2See https://github.com/fseiffarth/AppOfTukeyDepth for the code.

https://github.com/fseiffarth/AppOfTukeyDepth
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In summary, the evaluation of Alg. 1 clearly shows that our heuristic performs well in approxi-
mating the graph Tukey depth. It is faster (up to 200 times) than the exact algorithm, even on
small graph datasets. Regarding larger graphs, this gap in runtime will increase because of the
exponential runtime of the exact algorithm. Additionally, the very small relative errors (at most
4 · 10−3), the average errors (at most 1.65 per graph), and also the worst case errors show that
the algorithm can be used for further applications based on the Tukey depth (see Sec. 4).

4. Applications to Mining and Learning in Graphs

This section deals with the connection of Tukey depth to node separability and to geodesic
core-periphery decompositions. We first state three important properties of Tukey depth. In
particular, Proposition 3 clarifies the role of Tukey depth in the context of geodesic closed sets.
Propositions 4 and 5 are from [3].

Proposition 3. Let 𝐺 be a graph, 𝑣 ∈ 𝑉 (𝐺) with td(𝑣) = 𝑛− 𝑐, and 𝐶 ⊆ 𝑉 (𝐺) a geodesically
closed node set with |𝐶| > 𝑐. Then 𝑣 ∈ 𝐶 .

Proposition 4. Let 𝐺 be a graph, 𝑋 ⊆ 𝑉 (𝐺), and 𝐶 be the geodesic closure of 𝑋 . Then the
Tukey depth is a quasi-concave function, i.e., for all 𝑐 ∈ 𝐶 we have 𝑡𝑑(𝑐) ≥ min{𝑡𝑑(𝑥) : 𝑥 ∈ 𝑋} .

Proposition 5. Let 𝐺 be a graph, 𝑘 ∈ N, and 𝑋 = {𝑣 ∈ 𝑉 (𝐺) : td(𝑣) ≥ 𝑘}. Then 𝑋 is
geodesically closed.

To underline the importance of these three statements, we give two examples that show how
they influence existing concepts based on geodesic closures.

Example 1: Node Classification and Active Learning In [21, 14, 22, 23], disjoint half-
spaces and closed sets are used for binary classification in closure systems, for node classification,
and active learning in graphs using geodesic convexity. Given the Tukey depth td(𝑣) of a node
𝑣, Proposition 3 immediately implies that a separating half-space or closed set not containing 𝑣
cannot have a cardinality greater than 𝑛− td(𝑣). Thus, for nodes of high Tukey depth there is
no large geodesic closed set not containing them. Hence, Proposition 3 implies a nice theoretical
connection between Tukey depth and the maximum size of separating half-spaces and closed
sets. Using approximate Tukey depths, the predictive performance of all the above methods can
possibly be improved.

Example 2: Geodesic core-periphery decomposition The geodesic core-periphery decom-
position of graphs was analyzed in [16, 15, 17]. In particular, it was found in [15, 17] that many
social networks consist of a dense geodesic core “surrounded” by a periphery (see Fig. 3 for an
example). While some graphs, especially tree-like graphs, seem to have no core, others, such
as graphs sampled from random models like Erdős-Rényi, Barabási-Albert and Watts-Strogatz
seem to have no periphery. Moreover, the closure of a small number of randomly chosen graph
nodes (≈ 10) always contains the geodesic core (if it exists). Furthermore, if the nodes are
sampled from the geodesic core only, then the closure of the nodes is the geodesic core itself. If
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Figure 4: Tukey depth (top) vs. geodesic core-periphery decomposition (bottom) for the Karate Club [24],
Les Miserables character [25], and Dolphins social networks [26]. For the different Tukey depths we use
sequential colors. Core and periphery nodes are denoted by blue and yellow, respectively.

we compute the closure of, say, 10 randomly chosen nodes from the entire network (Fig. 3a),
then the closure always contains the core (orange nodes in Fig. 3b). If all random nodes belong
to the core (orange nodes in Fig. 3a), then their closure is the core itself. The above statements
explain this behavior. Using that the core is always contained in the closure of a small number
of randomly chosen nodes, from Proposition 4 it follows that the nodes in the core are those
with the highest Tukey depths. Moreover, the quasi-concaveness implies that if the core is
generated by a few nodes from the core, then the core nodes must have a very close Tukey
depth. Finally, using Proposition 5, we have that the set of nodes in a graph with a Tukey depth
above some threshold is always closed; cores arise as a special case of this property. These three
properties motivate the following deterministic definition of geodesic cores:

Definition 1. The 𝑘-geodesic core of a graph 𝐺 is defined by

𝐶𝑘 := {𝑣 ∈ 𝑉 (𝐺) : td(𝑣) ≥ 𝑘} .

To empirically confirm our claim that the core contains the nodes with the highest Tukey
depths, consider the three graphs in Fig. 4. For each graph, we computed the exact Tukey depths
(top) and their geodesic cores (bottom). For the Karate Club network (left) considered also in
[3], the core exactly matches the nodes of the highest Tukey depth. Furthermore, there is not
much fluctuation in the depths of the core nodes. In fact, all nodes of Tukey depth of at most
3 belong to the periphery and all nodes of Tukey depth 19 or 21 to the core. In the case of
the Les Miserables character network (middle), there is only a single node with a very high
Tukey depth of 57, surrounded by nodes of depth less than 35. In this case, the core algorithm
returns only the node with the highest Tukey depth, showing that the graph Tukey depth can
possibly be used to improve core-periphery decomposition. This is also the case for the Dolphin



community graph (right), where the core consists of nodes with Tukey depth greater than 2,
while all nodes in the periphery have a Tukey depth of at most 2.

5. Concluding Remarks

Our results indicate that graph Tukey depth is an interesting and promising concept for mining
and learning with graphs. The study of the relationship of graph Tukey depth to other node
centrality measures is an interesting question for further research (see Fig. 1). For example,
while the centroid(s) in trees [27, 28] are exactly the nodes with the highest Tukey depth, this is
not necessarily the case for more general graphs beyond trees.

Another important issue is to understand the semantics of graph Tukey depth better. For
example what are the properties of the nodes with the highest depth (cf. the def. of Tukey-median
in R𝑑)? We have empirically demonstrated that graph Tukey depth can closely be approximated
for small graphs. It is a question of whether this result holds for (very) large graphs as well.
To answer this question, the scalability of our approximation algorithm should be improved
on the one hand. On the other hand, one needs (possibly tight) theoretical upper bounds on
graph Tukey depths. Another interesting question is to identify graph classes for which our
approximation is always exact. While this is the case for trees, it is unclear whether it holds for
outerplanar graphs as well. We believe that this question can be answered affirmatively by using
techniques from [16]. As shown in the paper, graph Tukey depth “naturally” connects different
concepts based on geodesically closed sets; examples include the deterministic definition of
𝑘-geodesic cores. This implies that using our fast core approximation algorithm [16], we can
closely approximate the set of nodes with the highest Tukey depth.
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