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Abstract—Frequent connected subgraph mining (FCSM) has
been an active area of research over the last twenty years. This
review shall focus on the practical and theoretical issues arising in
the transactional setting, where we are given a finite list of small to
medium sized graphs and must find all graphs that are subgraph
isomorphic to some user-defined number of graphs in the list.
In particular, we present the generic approach to FCSM and
investigate sufficient conditions for its computational tractability
and intractability. Interestingly, it turns out that these are
dependent on the complexity of the HamiltonianPath problem.
This implies that FCSM is computationally tractable only for
very restricted transaction graph classes. We subsequently review
existing exact FCSM algorithms with a focus on applicability
to arbitrary graph databases and present recent approximative
FCSM algorithms that remain computationally tractable for all
transactional databases.

Index Terms—Frequent Subgraph Mining, Subgraph Isomor-
phism, Computational Complexity

I. INTRODUCTION

We present an overview on classical and recent results
in the area of frequent connected subgraph mining (FCSM).
Here, we are given a finite list D of small to medium sized
graphs and a pattern graph H is considered to be frequent
if it is subgraph isomorphic to at least t ∈ [|D|] graphs in
D. Frequent subgraphs can be used in many applications e.g.
directly for exploratory data analysis, association rule mining,
or indirectly for similarity assessment of graphs, classification,
among many other possibilities.

Over the last twenty years, many practical implementations
of frequent subgraph mining systems for the transactional set-
ting have been proposed. All algorithms employ some depth-
first or breadth-first search strategy over candidate patterns,
counting support, and pruning infrequent patterns and their
extensions. Most published work focuses on the efficient enu-
meration of candidate patterns and on canonicalization of the
patterns to avoid duplicates [7, 17]. They address the support
counting step in a less detailed manner, either citing some
off the shelf subgraph isomorphism algorithm, or roughly
sketching ways to keep track of all possible embeddings of
patterns into the transaction database (compare Section II-B).
Jiang et al. [17] suggest that this is due to the fact that the
subgraph isomorphism problem is seen as “harder to address”.
Hence more work is spent to reduce the number of calls to the
subgraph isomorphism subroutine as much as possible. While
this is an important issue, the main computational effort for
medium to large graph databases is to evaluate the embedding
operator for candidate patterns on transaction graphs [37].

It seems, that around the year 2008 the general interest
in novel algorithms faded and many people moved on to
parallelizing existing algorithms [cf. 17, 27] or solving dif-
ferent problem formulations using variations of the existing
algorithms. Jiang et al. [17] concluded in 2013 that this is due
to the maturity of the field. We disagree; our review shows that
existing exact algorithms are either restricted to very simple
graph classes or have exponential delay in common cases.
This in practice restricts such graph mining algorithms almost
exclusively to chemical graph databases. Welke et al. [35] have
shown that the state-of-the-art graph mining algorithms (which
all have exponential delay in the worst case) are inapplicable
on several non-chemical datasets. In fact, there is no clear
way to predict whether the graph miners in the literature
will be fast or inapplicable on a given dataset, which heavily
restricts their usefulness, e.g. in a data exploration setting.
We will hence review the related work with special regard to
the computational complexity of the mining algorithms. We
start by investigating sufficient conditions for computational
tractability and intractability of FCSM. In particular, we will
have a close look at the techniques employed to solve the
subgraph isomorphism problem during the mining. For reviews
focusing more on other aspects, we refer to [7, 17].

Recently, however, several novel approaches have emerged
that approximate the set of frequent subgraphs. To avoid the
computational complexity issues mentioned above, they (i)
restrict the pattern class and (ii) give up on the correctness
of the set of “frequent” patterns found. As a result of this
trade-off, they instead guarantee polynomial delay for arbitrary
transaction graph databases. This complements the exact but
inefficient algorithms that were proposed in the first decade of
this millennium and allows us to conclude with a simple prac-
tical guideline which algorithms to use and how to engineer
hybrid algorithms that combine the best of both worlds.

a) Outline: This survey is organized as follows: In
Sect. II we discuss the generic approach to frequent subgraph
mining and its computational complexity issues. Sect. II-A
presents efficient embedding operators for the generic ap-
proach, while Sect. II-B presents embedding list based op-
erators, which are most common in the early practical mining
systems. We present exact algorithms in Sect. III, approxima-
tive algorithms in Sect. IV, and conclude in Sect. V.



II. THE COMPLEXITY OF FCSM
In its most general form, the FCSM problem can be formu-

lated as follows:
Definition 1 (Frequent Connected Subgraph Mining Prob-

lem): Given a finite list D ⊆ G (called graph database) for
some graph class G and an integer threshold t ∈ [|D|], list
all graphs P ∈ P for some graph class P , called the pattern
class, that are subgraph isomorphic to at least t graphs in D.
The patterns in the output must be pairwise non-isomorphic.
An equivalent definition of this problem uses a relative (in-
stead of an absolute) frequency threshold. We parametrize
the problem by the transaction class G and the pattern class
P . These two graph classes are typically given implicitly, by
hardcoding them into the algorithms.1 In particular, if P is the
class of trees, then we call this the Frequent Subtree Mining
(FTM) problem.

The FCSM problem is a listing problem, where the out-
put is a list of objects. For listing problems, the following
output sensitive complexity measures are distinguished in the
literature [18]. Suppose an algorithm A for some listing
problem gets an instance x as input and outputs some sequence
y = [p1, p2, · · · , pn] of patterns. Then A generates y
• with polynomial delay, if the time before the output of
p1, between the output of any two consecutive elements
pi, pi+1, and between the output of pn and the termination
of A is bounded by a polynomial of size(x),

• in incremental polynomial time, if the algorithm outputs
p1 in time bounded by a polynomial of size(x), the
time between outputting pi and pi+1 is bounded by a
polynomial of size(x) +

∑i
j=1 size(pj), and the time

between the output of pn and termination is bounded by
a polynomial of size(x) + size(y).

• in output polynomial time, if the algorithm outputs the
elements of y in time bounded by a polynomial of
size(x) + size(y).

In general, the FCSM problem and the FTM problem can
not be solved in output polynomial time unless P 6= NP
[15, 35]. One way to obtain positive results, however, is
to restrict the transaction and/or pattern graph classes in
the FCSM problem. This allows to achieve some tractability
results, in particular for the FTM problem.

Theorem 1 ([35]): Let G and P be the transaction and
pattern graph classes satisfying the following conditions:

1) All graphs in P are connected. Furthermore, P is closed
downwards under taking subgraphs, i.e., for all H ∈
P and for all connected graphs H ′ we have H ′ ∈ P
whenever H ′ 4 H .

2) The membership problem for P can be decided ef-
ficiently, i.e., for any graph H it can be decided in
polynomial time if H ∈ P .

1An example of an implicit transaction graph class G would be to write an
algorithm that expects all graphs in the database D to be connected, omitting
checks for multiple connected components and repetition of work on the later
components. Restricting the pattern class P e.g. to trees allows to generate
only candidate patterns that are trees and more intricate methods to avoid
duplicate candidates [see, e.g., 7].
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Fig. 1. Relationship between complexities of the HamiltonianPath (HP) and
SubtreeIsomorphism (STI) problems for transaction graphs from G and the
complexity of the FTM problem.

3) Subgraph isomorphism in P can be decided efficiently,
i.e., for all H1, H2 ∈ P , it can be decided in polynomial
time if H1 4 H2.

4) Subgraph isomorphism between patterns and transac-
tions can be decided efficiently, i.e., for all H ∈ P and
G ∈ G, it can be decided in polynomial time if H 4 G.

Then the FCSM problem can be solved with polynomial delay
in the size of D for P and G.

Theorem 1 states that polynomial delay mining of frequent
trees is possible if the SubtreeIsomorphism problem can be
decided in polynomial time for a given transaction graph class
G (Conditions 1–3 hold if P is the class of trees). A negative
result in [15], however, implies that the FTM problem cannot
be solved in output polynomial time for arbitrary transaction
graphs, unless P = NP. Together, these two results draw a
intricate picture of the complexity of the SubtreeIsomorphism
problem: A few transaction graph classes (most notably, if G
is the class of trees) are easy to mine. On the other hand, the
question whether frequent tree mining is possible in output
polynomial time is equivalent to the question whether P = NP
for a broad range of transaction graph classes. For the remain-
ing transaction graph classes, interestingly, frequent subtree
mining is connected to the complexity of the HamiltonianPath
problem. An overview of these results is shown in Fig. 1.

Three main research areas have evolved from this theoretical
and practical limitation: (i) Practical algorithms that ignore the
complexity issues and aim to be fast on certain (typically not
well defined) types of transaction databases, (ii) algorithms
that restrict either pattern or transaction graph class and are
efficient on well defined data, and (iii) algorithms that relax
the problem to avoid the complexity of the exact mining.

A. Efficient Algorithms for the SubgraphIsomorphism Problem
How to efficiently address Cond. 4 of Thm. 1 is usually left

out by graph mining papers. In fact, most graph miners focus



on efficient candidate enumeration, instead of embedding
computation. The literature typically justifies this by showing
experimental results on chemical graph databases, where the
mining systems are fast. We refer to [7] for a discussion of
efficient candidate generation for tree patterns and now turn
to efficient embedding computation algorithms.

Various efficient algorithms exist for restricted versions
of the SubgraphIsomorphism problem; possibly even more
special cases have been shown to remain NP-complete. There
is no way to give a complete overview on the work that
was done in this area; we present a few results that relate
to mining. In particular, we focus on the complexity of the
SubtreeIsomorphism problem as this is relevant for both exact
mining and for several efficient relaxations.

The SubtreeIsomorphism problem can be solved in polyno-
mial time if the pattern graph H is a tree and the transaction
graph G is a forest. Various efficient algorithms have been
proposed in the last fifty years [8, 21, 24, 30, 33]. How-
ever, the positive result for the SubtreeIsomorphism prob-
lem does not hold if the pattern graph is allowed to be
disconnected, i.e., the SubgraphIsomorphism problem is NP-
complete even for forest transactions [12]. The currently
fastest known algorithm for the SubtreeIsomorphism prob-
lem for a tree pattern H and forest transaction G requires
O
(
|V (G)| · |V (H)|1.5 / log |V (H)|

)
time [30]. Generally,

the SubtreeIsomorphism problem is solved by bottom-up
evaluation over a rooted version of one of the two trees.
This is done by combining partial subgraph isomorphisms
of the children of the current vertex by solving bipartite
matching instances. As a result, frequent subtree mining in
forest databases is computationally tractable (cf. Thm 1).

Marx and Pilipczuk [22] systematically investigate the
complexity of the SubgraphIsomorphism problem for several
combinations of pattern and transaction graph classes. They
consider the tractability of the problem when bounding any
combination of ten parameters, containing, e.g., number of
vertices, number of connected components, maximum vertex
degree, and tree-width, for pattern, or transaction. Their (max-
imal) positive results require either the number of vertices or
the maximum vertex degree of the pattern to be constant. If
the pattern has constant vertex degree, polynomial algorithms
are known for transactions that are almost-k trees [1], or
have constant tree-width [23], or log-bounded fragmentation
[13]. On the other hand, it follows from Akutsu [1] that the
SubtreeIsomorphism problem is NP-complete for unbounded
pattern degree even for outerplanar graphs. As outerplanar
graphs have tree-width at most two, we have a clear distinction
of the complexity of the SubtreeIsomorphism problem based
on the tree-width of the transaction graph class: It is in P for
the class of graphs with tree-width at most one and is NP-
complete for the class of all graphs with tree-width k for all
k ≥ 2, unless we restrict the vertex degree of the pattern tree
to be a constant. However, the vertex degree a pattern tree can
be unbounded if a less restrictive property, called block degree
of the transaction graphs is restricted [35].

B. Embedding Lists and Exponential Algorithms

As positive complexity results for restrictions of the Sub-
treeIsomorphism problem are scarce, algorithms for the Sub-
graphIsomorphism problem that do not guarantee bounded
worst-case runtime but are fast in practice on many types
of graphs have been proposed. To this end, Ullmann [31]
computes the set of all subgraph isomorphisms from a pat-
tern graph H to a transaction graph.2 An extension of Ull-
mann’s algorithm is due to [9]. His algorithm fixes an order
[v1, v2, . . . , v|V (H)|] of the vertices of H and considers the
sequence [H1, H2, . . . ,H|V (H)| = H] of induced subgraphs
Hi = H[

⋃i
j=1 vj ]. It computes the set EL(Hi+1, G) :=

{ϕ : ϕ : V (Hi+1)→ V (G) is a subgraph isomorphism} by
extending each subgraph isomorphism ϕ ∈ EL(Hi, G) to sub-
graph isomorphisms from Hi+1 to G as follows: The algorithm
checks whether the novel vertex vi+1 in Hi+1 is compatible to
ϕ. That is, whether there exists a vertex w ∈ V (G) that is not
yet part of the image of ϕ and is connected to all images of
the neighbors of vi+1 in Hi+1. Hence each ϕ ∈ EL(Hi, G)
can be extended to up to |V (G)|− i isomorphisms from Hi+1

to G. The algorithm either terminates by finding a subgraph
isomorphism from H to G or stops after finding a subgraph
isomorphism from some Hi to G, but none from Hi+1 to G.

This method works well for chemical graphs and some
other workloads [26, 40]. Due to a moderate number of
vertex and edge labels, high sparsity and (almost) planarity
of chemical graphs the sizes of the sets EL(Hi, G) tend to
be small. The runtime of Ullmann’s algorithm depends on
the total number of subgraph isomorphisms from any Hi in
[H1, H2, . . . ,H|V (H)| = H] to G. This number is at most

|V (H)|∑
i=1

|EL(Hi, G)| ≤
|V (H)|∑
i=1

(
|V (G)|
|V (Hi)|

)
· |V (Hi)|! .

This bound is best possible without any further assumptions on
G. Consider the case that G is an unlabeled complete graph:
For each permutation of each k-sized subset of the vertices of
G there exists a unique isomorphism from (any graph) H with
|V (H)| = k. Hence, the number of subgraph isomorphisms
that need to be computed may be exponential in the size of
G and factorial in the size of H . There is no known way to
compute or estimate the exact number of such embeddings
(an exact solution in polynomial time would solve the Sub-
graphIsomorphism problem). Hence it is required to run the
algorithm and to observe the required runtime and consumed
memory for storing embeddings.

On the other hand, however, this method is easy to imple-
ment and particularly well-suited for the workload of frequent
subgraph mining systems. For a breadth-first or depth-first
mining algorithm all (resp. one) subgraphs of any pattern
graph H were already enumerated and their support count has
already been computed. Hence, we have (in the notation from
above) already computed EL(H|V (H)|−1, G) for some suitable

2Checking whether this set is empty, or not, obviously solves the Subgraph-
Isomorphism problem.



direct predecessor3 H|V (H)|−1 of H = H|V (H)|. If we store
all embeddings for all patterns from the previous level, we can
compute the set of embeddings of H into any graph G in the
database, by reusing the embeddings of a predecessor.

In practice, it seems to be the case that a low average vertex
degree in combination with a moderately-sized set of possible
vertex and edge labels dramatically reduces the number of
possible subgraph isomorphisms. Empirical evaluations of the
existing frequent subgraph mining systems indicate that this
approach works well on chemical graphs and some other
databases. There is generally no guarantee that it is always
the case. In fact, there are many practically relevant graph
databases where the runtime and space requirements of Ull-
mann’s algorithm explode for no apparent reason [35].

III. ALGORITHMS FOR THE FCSM PROBLEM

We briefly discuss the most relevant exact algorithms with
focus on their efficiency. As before, we distinguish between
FTM systems (where efficient mining might be achievable)
and general FCSM systems. An overview of the presented
algorithms can be found in Table I.

A. Frequent Subtree Mining Algorithms

As we have seen, frequent subtrees can be enumerated
efficiently (i.e., with polynomial delay) in forest transaction
databases [15]. However, most existing systems do not use
an efficient embedding operator and hence may result in
exponential delay and memory consumption even in this case.

FreeTreeMiner [5] solves the FTM problem for tree
databases. This work introduces tree mining as an area of
research and develops the first4 algorithm that uses canonical
representations of trees for efficient pattern generation. The
authors propose a canonical string representation for trees
and a BFS algorithm to mine all frequent trees in a tree
database. Chi et al. use the efficient algorithm of Chung [8]
to compute the support of a candidate tree pattern in the tree
database. They evaluate their algorithm on a chemical dataset,
an IP multi-cast dataset that represents one-to-many streaming
topologies on the Internet, and on synthetic datasets.

HybridTreeMiner [6] also solves the FTM problem for tree
databases, and, in addition, the problem of mining rooted trees
in databases of rooted trees. They use a DFS approach, instead
of a BFS approach and propose a novel way of counting the
support. Now, the authors resort to embedding lists but use
them in a smart way that requires only one pass over the
database. This, however, results in exponential worst case time
and space in the size of the output. They show, however, that
this approach is faster by an order of magnitude compared
to FreeTreeMiner. Interestingly, however, the IP multi-cast
dataset is not considered in this study.

3When mining graphs that may contain cycles, the notions are slightly
modified to allow the extension to work edge-by-edge, not vertex-by-vertex.
In the context of the FTM problem, however, both notions are equivalent.

4Zaki [39] introduced “tree mining” before, but considered rooted ordered
trees and a different embedding operator.

FreeTreeMiner [28] solves the FTM problem in databases
containing more general graphs. The algorithm explicitly com-
putes the embedding lists for all extensions by a single edge
while evaluating the frequency of a candidate pattern. These
candidate patterns are only recursively extended if they have
a canonical form. The authors do not prove the soundness,
completeness, nor irredundancy of their algorithm and evaluate
their algorithm on a chemical database.

F3TM [40] similarly solves the FTM problem in databases
containing cyclic graphs using a depth-first search over the
pattern space. They focus on the candidate generation step and
employ an iterative version of [31] for the support counting
step that is intertwined with the candidate generation step.
They evaluate F3TM on chemical and artificial data [19].

B. Frequent Subgraph Mining Algorithms

FSG [19] is a BFS algorithm for mining all frequent
subgraphs in graph transaction databases. To compute the
support of a candidate pattern, FSG stores the support set
of each frequent pattern and intersects the support sets of
parent patterns to reduce the number of explicit subgraph
isomorphism tests to be evaluated for any candidate pattern.
The authors do not disclose the implementation details or a
reference for their embedding operator. Neither do they men-
tion additional storage requirements for storing embeddings
explicitly, which might indicate that they use an algorithm that
does not require such knowledge. The authors evaluate FSG
on chemical and artificial graph datasets. The algorithm was
used to first show the impressive predictive performance of
frequent subgraph based learners on chemical graph datasets
[11].

MoSS, is specifically targeted at chemical graph databases
[2, 3]. Their algorithm implements special domain knowledge
(e.g., handling of aromatic bonds) and is a depth-first search
over a pattern space that can be “seeded” with a chemically
meaningful core pattern that will be contained in all frequent
patterns to be found. The authors use embedding lists to
compute the support count; their approach, however, suffers
from a missing graph canonicalization scheme. Hence patterns
are enumerated multiple times (and their support is computed
multiple times). The authors qualitatively analyze the patterns
found using their approach on a chemical dataset.

gSpan [38] mines frequent subgraphs using a depth-first
traversal of the pattern space. To avoid multiple enumeration
of the same candidate pattern, it applies an inclusion-exclusion
principle on frequent edges. That is, a pattern is extended
with an ever shrinking set of frequent edges. To compute the
support of a candidate pattern, the algorithm recursively works
on the support sets of the patterns being extended, resulting in
a reduced number of calls to the embedding operator. gSpan
uses the subgraph isomorphism algorithm by [9]. They show
experiments on the datasets used by [19] and show that their
algorithm outperforms FSG.

FFSM [16] also uses a depth-first traversal of the pattern
space. They use a novel canonical representation of arbitrary
graphs that has size O

(
n2
)

for a graph on n vertices and



Name Reference Transactions Embedding Algorithm Delay Comment
Frequent Subtree Mining Algorithms

FreeTreeMiner Chi et al. [5] Forests Chung [8] polynomial
HybridTreeMiner Chi et al. [6] Forests Embedding lists exponential
FreeTreeMiner Rückert and Kramer [28] Graphs support sets exponential
F3TM Zhao and Yu [40] Graphs Ullmann [31] exponential

Frequent Subgraph Mining Algorithms

FSG Kuramochi and Karypis [19] Graphs Embedding lists exponential Mines all frequent
subgraphs

MoSS Borgelt and Berthold [2]
Borgelt et al. [3]

Chemical
Graphs

Embedding lists exponential Mines all frequent
subgraphs

gSpan Yan and Han [38] Graphs Cordella et al. [9] exponential Mines all frequent
subgraphs

FFSM Huan et al. [16] Graphs Embedding lists exponential Mines all frequent
subgraphs

Gaston Nijssen and Kok [25, 26] Graphs Embedding lists exponential Can mine paths, trees,
and cyclic patterns

– Horváth and Ramon [14] Bounded
Tree-Width Horváth and Ramon [14] incr. pol. time Mines all frequent

subgraphs

Algorithms for Relaxed Problems

SUMMARIZE-MINE Chen et al. [4] Graphs Embedding lists exponential Mines a random subset of
all frequent subgraphs

PS Welke et al. [34, 35, 36] Graphs Shamir and Tsur [30]
Welke et al. [35, 36] pol. delay Mines a random subset of

all frequent subtrees

MUSE Zou et al. [41] Uncertain
Graphs

Embedding lists exponential

REAFUM Li and Wang [20] Graphs Embedding lists exponential β subgraph isomorphism

– Schulz et al. [29] Graphs Dalmau et al. [10] pol. delay Mines a superset of all
frequent subtrees

TABLE I
AN OVERVIEW OF FREQUENT SUBTREE AND SUBGRAPH MINING SYSTEMS FOR FOREST AND GRAPH TRANSACTION DATABASES.

propose extension and join operators that generate all fre-
quent patterns. However, these operators may generate patterns
multiple times, not necessarily in a canonical form. They
use embedding lists and show how their extension and join
operators can use them to only output frequent patterns.

Gaston [26] is the fastest frequent subgraph mining system
on chemical graph databases [37]. Their algorithm mines
frequent patterns in three stages: First, all frequent paths are
generated. In the second stage, tree candidates are grown
from the frequent paths. Finally frequent cyclic graphs are
grown from the frequent trees and frequent paths by adding
edges between existing vertices. Hence Gaston can be seen as
both a specialized frequent subtree mining algorithm and as a
frequent subgraph mining algorithm. There are two variants
of Gaston that differ in their support counting subroutine.
The first variant uses embedding lists, the second computes
the subgraph isomorphisms “from scratch” for each candidate
pattern. The authors are not very specific on the details of
the latter. They describe it as a backtracking algorithm that
has exponential worst-case running time in the size of the
pattern and the transaction graphs involved. They evaluate
their algorithm on an artificial tree dataset and on three large
molecular datasets.

Horváth and Ramon [14] propose an algorithm that mines
all frequent connected subgraphs in transaction databases
consisting of graphs of bounded tree-width. Their algorithm

runs in incremental polynomial time, while the embedding
operator by itself is NP-complete (compare Section II-A).
That is, the SubgraphIsomorphism problem is NP-complete
for transaction graphs with tree-width at most some constant k
if the vertex degree of the pattern is not bounded by a constant,
as well. This result is, to the best of our knowledge, the
only existing result that describes an efficient algorithm for a
problem in the upper left quadrant of Figure 1. Their algorithm
identifies a polynomially sized subset of non-redundant iso-
quadruples that are stored for each frequent subgraph and each
transaction. Such iso-quadruples represent partial subgraph
isomorphisms but – in comparison to explicitly storing all
possible embeddings from the patterns to the transaction
graphs – may represent multiple embeddings of the pattern
that are in some sense equivalent. Their embedding operator
extends ideas from [13] to the case that the vertex degree of the
pattern is unbounded. Interestingly, the approach of Horváth
and Ramon requires a breadth-first traversal of the pattern
space to be efficient. They show that almost all (> 99.9%) of
the graphs in a large chemical graph database have tree-width
at most 3, and hence that their result is practically relevant but
do not give any empirical evaluation of their algorithm.

IV. ALGORITHMS FOR RELAXED PROBLEMS

As we have seen, there has not been much progress in terms
of efficient systems for exact frequent subtree mining or exact



frequent subgraph mining. Recently, researchers have turned
to approximations of the FCSM and FTM problem. There has
also been some interest in dealing with graph databases that
contain noisy data. While this setting is different from the
scope of this survey, some of the resulting algorithms can
be applied to exact transactional graph databases and yield
approximations of the set of frequent subgraphs.

Chen et al. [4] try to address the drawbacks of the exact
systems described in Section III-B on larger graph transac-
tions, i.e., the large number of embeddings of a pattern that
need to be processed by the embedding operators described
in Section II-B. To this end, they propose to replace each
graph in the database by a summarized graph and to mine
frequent patterns in this novel graph database using the gSpan
algorithm [38]. A summarized graph G′ is created from a
labeled transaction graph G by choosing a random partition
V (G) = V1∪̇V2∪̇ . . . ∪̇Vk of the vertex set of G such that
for all i ∈ [k], all vertices in Vi have the same label. Now,
the vertices of G′ are the partitions Vi and there exists an
edge (Vi, Vj) with label l if and only if there exists an edge
(vi, vj) ∈ E(G) with vi ∈ Vi, vj ∈ Vj , and label l. Hence,
the summarized graph G′ is not simple, i.e., it may contain
self-loops and multiple edges (with different labels) between
any two vertices. This construction results in a two-sided error,
i.e., for two graphs H and G and a summarized graph G′ of G
there may be (i) false negatives: that is H 4 G but H 64 G′, or
(ii) false positives: that is H 64 G but H 4 G′. These effects
obviously translate to the set of frequent patterns found by
the algorithm of Chen et al.. To deal with false negatives, the
authors propose to lower the frequency threshold in the mining
phase and give a probabilistic guarantee on its effectiveness. To
further increase the recall of frequent patterns their algorithm
repeats the summarization independently several times. To
address the false positives, they propose to simply retest
the patterns found to be frequent in the summarized graph
database on the original graph database. Together, this yields
the SUMMARIZE-MINE algorithm that guarantees to find a
subset of all frequent subgraphs in a given database. Chen
et al. [4] find frequent subgraphs instead of frequent subtrees
and use an exponential worst-case time embedding algorithm,
thus they are not able to guarantee any delay bounds. Their al-
gorithm requires to retest all patterns found in the summarized
graph database on the original database to ensure that they are
indeed frequent. Hence, no real structural simplification of the
FCSM or SubgraphIsomorphism problems takes place.

Welke et al. [34] propose to mine frequent subtrees in
arbitrary transaction graph databases with one-sided error. That
is, their probabilistic subtree mining algorithm (PS) guarantees
that each tree in the output is indeed frequent, but does not
guarantee that all frequent trees are found. This is done by
sampling a polynomial number of spanning trees for each
graph in the transaction database and mining frequent subtrees
in the resulting forest database. Hence, they transform an
intractable FCSM problem to a tractable FTM problem which
can be solved with polynomial delay (cf. Sect. III-A). In
subsequent work, they present an extension that allows to

implicitly consider exponentially many spanning trees per
transaction graph, while maintaining the computational effi-
ciency of the mining algorithm [35]. A recent paper proposes
a faster embedding operator [36].

Zou et al. [41] propose MUSE to mine patterns in databases
of uncertain graphs. An uncertain graph is a labeled graph G
together with a probability function p : E(G) → [0, 1] on its
edges and represents the probability distribution P over all
graphs (V (G), E′) for E′ ⊆ E(G), with P ((V (G), E′)) :=∏

e∈E′ p(e). Now, for a pattern graph H and an uncertain
graph G, the probability of H matching G is defined as

P4(H,G) =
∑

E′⊆E(G)

P ((V (G), E′))I(H, (V (G), E′)) ,

where I(H, (V (G), E′)) = 1 if H 4 (V (G), E′) and
I(H, (V (G), E′)) = 0 otherwise. Given a graph database D
and a frequency threshold θ ∈ (0, 1], MUSE approximates the
set of all pattern graphs H with 1

|D|
∑

G∈D P4(H,G) ≥ θ,
i.e., where the average probability of H matching the graphs
is at least θ. They show that counting the number of such
patterns for a given database is #P-complete [32] and their
algorithm approximates the set of such patterns. MUSE works
by generating patterns on the database with probabilities
removed from the edges by explicitly storing and extending the
embeddings as described in Section II-B. Based on these ex-
plicit embeddings they propose an exponential time algorithm
to compute the matching probabilities and an approximate
algorithm that computes an interval of matching probabilities.
They show how to obtain an algorithm that guarantees with
high probability for some ε ∈ (0, 1] and a frequency threshold
θ that all patterns with support at least θ are output, all
patterns with support less than (1−ε)θ will not be output, and
decisions for remaining patterns are arbitrary. However, due to
the necessity of evaluating a function over all embeddings of
a pattern, the method does not run in output polynomial time.
In a way, this can be seen as the opposite approach to Welke
et al. [34]: They consider some probability distributions on
the set of spanning trees given by the database graphs and
obtain frequent subtrees from certain samples directly, instead
of mining patterns on the underlying graphs.

Li and Wang [20] consider transactional graph databases
that contain graphs where some vertices, edges, or labels may
be “wrong”. They propose to relax the notion of isomorphism
and subgraph isomorphism. To this end they introduce β
(subgraph) isomorphism, where a graph H is β subgraph
isomorphic to a graph G if there exists a sequence of vertex
and edge additions or deletions and relabeling operations of
length at most β that transforms H into a graph that is
(subgraph) isomorphic to G. If applied in a generic min-
ing algorithm, such an embedding operator would result in
finding a superset of the frequent patterns with respect to
subgraph isomorphism: β subgraph isomorphism is equivalent
to subgraph isomorphism for β = 0 and for any β > 0 the
existence of a subgraph isomorphism from H to G implies the
existence of a β subgraph isomorphism from H to G. Their
proposed tool REAFUM, however, first selects a small subset



of “representative” graphs for a given graph database and
considers only those patterns as candidates that can be found
in the set of representative graphs. Frequency counting takes
place on the full dataset and is based on storing all embeddings
of all approximate matches of the patterns (i.e., an extension
of the ideas described in Section II-B). In their experimental
evaluation they show that they are able to find more patterns
than the exact Gaston algorithm on a small molecular dataset.
Due to the candidate selection process, the resulting pattern
set is not guaranteed to be a superset of all frequent patterns
with respect to normal subgraph isomorphism.

Schulz et al. [29] propose a frequent tree mining algorithm
that allows to mine a superset of the frequent subtrees in an
arbitrary graph database. Subgraph isomorphisms are injective
graph homomorphisms; Schulz et al. propose to add some
injectivity constraints to graph homomorphisms, while main-
taining computational efficiency of the embedding operators.
Graph homomorphism can be decided in polynomial time
for patterns of bounded tree-width and arbitrary transaction
graphs [10]. Hence, for tree patterns, which have tree-width
one, one can add a number of binary injectivity constraints
between vertices (implemented by new edges with a new
label) to the pattern as long as the resulting graph remains of
bounded tree-width. Deciding homomorphism between such
an extended pattern and a transaction graph that is extended
with all possible edges with that new label ensures that the
injectivity constraints are fulfilled. As a result, tree patterns
that are frequent with respect to subgraph isomorphism are
frequent with respect to partially injective homomorphism,
as well. Schulz et al. propose a mining strategy for this
embedding operator that finds a superset of all frequent tree
patterns (with respect to subgraph isomorphism). This is
done by mining “maximally” constrained tree patterns that
are defined by k-trees. Hence this method can be seen as
approximating the set of frequent subtrees “from above”.

V. CONCLUSION

We have presented sufficient conditions for tractable fre-
quent connected subgraph mining and have surveyed exact
FTM and FCSM systems. As it turns out, only [5, 14] use ef-
ficient embedding operators to solve the FCSM in incremental
polynomial time. [14] is mainly a theoretical result as it was
not implemented. Thus the only existing implementation with
guaranteed worst-case delay (by Chi et al.) can only mine
trees in forest transactions. This leaves us with the practical
problem that all other algorithms may or may not work on
any given graph database, and there is no way of knowing
for sure. Even a single graph with a ridiculous amount of
possible embeddings can hold up the mining process almost
indefinitely. Hence we conclude that additional work is re-
quired to obtain efficient algorithms that are applicable in
broader settings; most likely this task involves focusing more
on efficient embedding operators. The recent development of
efficient algorithms for approximations of the FTM problem,
however, may spark new interest in frequent subgraph mining
as a field of research and as a tool for data analysis, as it

mitigates the stability issues of the exact, inefficient mining
algorithms.

It remains an open problem to decide which kind of
algorithm should be chosen for a given graph database, or
possibly even individually for each graph in a database. While
it was shown that the approximative methods are faster than
exact frequent subgraph miners on complex graph databases,
exact graph mining algorithms are typically faster on chem-
ical graphs (and probably on some other very simple graph
databases as well). It is possible to combine the potentially
inefficient embedding computation with the efficient methods
to get the best of both worlds: Introducing a new parameter, we
can allow a mining algorithm to store at most a certain number
of embedding lists per graph. If a candidate pattern results in
too many embeddings for a given graph, we discard them and
switch to our probabilistic embedding operator for this graph.
As the number of embeddings of a pattern is polynomial in
the number of patterns of its predecessor for any given graph,
this can be implemented efficiently. This adaptive algorithm
could preserve the speed of e.g. Gaston on chemical graph
databases, respectively that of our algorithm on other graph
databases (with a small overhead).

As long as this algorithm is not implemented, though,
you may follow this guideline: If you have a tree database,
FreeTreeMiner [5] or PS [34]. If you have chemical graphs,
use Gaston [26]. For all other graph databases, you may try
Gaston-re [26], but should use PS [34].
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[15] T. Horváth, B. Bringmann, and L. D. Raedt, “Frequent
hypergraph mining,” in ILP. Springer, 2007.

[16] J. Huan, W. Wang, and J. Prins, “Efficient mining of
frequent subgraphs in the presence of isomorphism,” in
ICDM, 2003.

[17] C. Jiang, F. Coenen, and M. Zito, “A survey of frequent
subgraph mining algorithms,” Knowl Eng Rev, vol. 28,
no. 1, pp. 75–105, 2013.

[18] D. Johnson, C. Papadimitriou, and M. Yannakakis, “On
generating all maximal independent sets,” Inf Proc Let,
vol. 27, no. 3, pp. 119–123, 1988.

[19] M. Kuramochi and G. Karypis, “An efficient algorithm
for discovering frequent subgraphs,” TKDE, vol. 16,
no. 9, pp. 1038–1051, 2004.

[20] R. Li and W. Wang, “REAFUM: representative approx-
imate frequent subgraph mining,” in SDM, 2015.

[21] A. Lingas, “An application of maximum bipartite c-
matching to subtree isomorphism,” in CAAP, 1983.

[22] D. Marx and M. Pilipczuk, “Everything you always
wanted to know about the parameterized complexity
of Subgraph Isomorphism (but were afraid to ask),” in
STACS, 2014.
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