
Noname manuscript No.
(will be inserted by the editor)

Probabilistic and Exact Frequent Subtree Mining in
Graphs Beyond Forests ⋆

Pascal Welke · Tamás Horváth · Stefan
Wrobel

the date of receipt and acceptance should be inserted later

Abstract Motivated by the impressive predictive power of simple patterns, we con-
sider the problem of mining frequent subtrees in arbitrary graphs. Although the
restriction of the pattern language to trees does not resolve the computational com-
plexity of frequent subgraph mining, in a recent work we have shown that it gives
rise to an algorithm generating probabilistic frequent subtrees, a random subset of
all frequent subtrees, from arbitrary graphs with polynomial delay. It is based on
replacing each transaction graph in the input database with a forest formed by a
random subset of its spanning trees. This simple technique turned out to be quite
powerful on molecule classification tasks. It has, however, the drawback that the
number of sampled spanning trees must be bounded by a polynomial of the size
of the transaction graphs, resulting in less impressive recall even for slightly more
complex structures beyond molecular graphs. To overcome this limitation, in this
work we propose an algorithm mining probabilistic frequent subtrees also with poly-
nomial delay, but by replacing each graph with a forest formed by an exponentially
large implicit subset of its spanning trees. We demonstrate the superiority of our
algorithm over the simple one on threshold graphs used e.g. in spectral clustering.
In addition, providing sufficient conditions for the completeness and efficiency of our
algorithm, we obtain a positive complexity result on exact frequent subtree mining
for a novel, practically and theoretically relevant graph class that is orthogonal to
all graph classes defined by some constant bound on monotone graph properties.

1 Introduction

A common approach of extending traditional machine learning algorithms to struc-
tured data such as graphs and other relational structures is to embed the instances

⋆ A preliminary version of this paper appeared as (Welke et al 2015). In comparison to that
conference article, in this work we present an application of our pattern mining algorithm to
probabilistic frequent subtree mining and empirically evaluate its performance on threshold
graphs. As another novel contribution compared to (Welke et al 2015), we generalize our results
to a much broader graph class, provide all proofs as well as a tighter runtime analysis, and
discuss some theoretically/practically interesting subclasses of this graph class.

Address(es) of author(s) should be given

2 Pascal Welke et al.

into some space spanned by some appropriately chosen feature set. This method,
also known as propositionalization is a common technique in Inductive Logic Pro-
gramming (ILP) (see, e.g. Kramer et al 2001, for a survey on this topic). In contrast
to kernel methods, where the feature space can be of infinite dimension and the
corresponding embedding function is not explicitly given or even unknown together
with the feature space, propositionalization in ILP always assumes finite feature sets
and explicitly specified embedding functions. One of the main advantages of this
technique is that learning/mining in first-order logic can be reduced to some tra-
ditional problem setting concerned with learning/mining in a single table of fixed
width. That is, the columns of the table correspond to features and the rows to im-
ages of the instances in the underlying feature space. This technique allows also for
an effective control of decidability and complexity issues raised by first-order logic.
We note that pattern based propositionalization for graph structured data belongs
also to this branch of ILP technique. Indeed, since graphs are special relational struc-
tures, our approach can be considered as propositionalization in ILP for a restricted
type of relational structures. The difference is that for function-free ILP learning
settings (i.e., all function symbols are of arity 0 or equivalently, constants) when the
patterns are Boolean conjunctive queries (i.e., first-order function-free goal clauses),
the embedding function is typically defined by relational homomorphisms. In con-
trast, regarding graph patterns as first-order function-free goal clauses, for graphs
homomorphisms are typically required to be injective (i.e., subgraph isomorphisms).

Since the first application of frequent subgraphs as features to molecule clas-
sification (Deshpande et al 2005), many further studies have empirically demon-
strated a remarkable predictive performance of frequent patterns on various real-
world datasets. In fact, as shown for instance by Bringmann et al (2006) in the
context of correlated pattern mining, even very simple patterns, such as paths or
trees, often suffice to obtain considerable predictive accuracy. Our empirical results
in (Welke et al 2018) on various benchmark chemical graph datasets also confirm
that frequent subtrees as features do result only in a marginal loss in predictive
performance compared to frequent connected subgraphs.

Despite the structural simplicity of trees, frequent subtrees cannot be generated
in output polynomial time for arbitrary transaction graphs (unless P = NP). The
reduction used in the proof of the computational intractability of frequent connected
subgraph mining (Horváth et al 2007) applies to tree patterns as well. This complex-
ity limitation appears to prohibit frequent pattern mining in practically feasible time
even for relatively simple graph structures. In particular, the empirical results in our
recent paper (Welke et al 2018) indicate that all the most popular state-of-the-art
frequent tree (and subgraph) mining algorithms seem to be limited to databases of
small molecular graphs in practice, as their runtime consistently explodes even for
slightly more complex graph structures. To overcome this problem, in (Welke et al
2018) we proposed to generate only a random subset of frequent subtrees, called
probabilistic frequent subtrees, and empirically demonstrated that their predictive
performance is very close to that of the complete set of frequent subtrees. This, in
turn, is a tight approximation of the predictive performance of the complete set of
frequent connected subgraphs.

Utilizing that a tree is subgraph isomorphic to a graph if and only if it is subtree
isomorphic to one of the graph’s spanning trees, our algorithm in (Welke et al 2018)
generates probabilistic frequent subtrees in the following simple way: It replaces each
transaction graph in the input database by a forest formed by the vertex disjoint

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 3

union of a random subset of its spanning trees and, using e.g. the levelwise search
algorithm (Mannila and Toivonen 1997), generates the set of frequent connected
subgraphs (i.e., subtrees) for the forest database obtained. Since spanning trees can
be sampled in polynomial time (Wilson 1996) and subgraph isomorphism from a
tree into a forest can be decided in polynomial time (Matula 1968), the results in
(Horváth and Ramon 2010) immediately imply that probabilistic frequent subtrees
can be enumerated with polynomial delay in this way if for each transaction graph,
the number of spanning trees in the sample is bounded by a polynomial of the
graph’s size. Note that the output is sound (i.e., all patterns printed are frequent
subtrees), but not necessarily complete (i.e., some frequent subtrees may not be
enumerated). If, however, the number of spanning trees of the transaction graphs is
bounded by a polynomial of their size and all transaction graphs are replaced with
their complete set of spanning trees, then the algorithm sketched above solves the
exact frequent subtree mining problem correctly (i.e., soundly and completely) and
with polynomial delay. The efficiency follows, together with the remarks above, from
the positive result that the set of all spanning trees of a graph can be listed with
polynomial delay (Read and Tarjan 1975).

In this work we go beyond the limitation of processing polynomially many span-
ning trees only and present an algorithm able to generate (probabilistic) frequent
subtrees from arbitrary graphs with polynomial delay by considering a potentially ex-
ponentially large implicit subset of the spanning trees for each graph in the database.
The core of our mining algorithm is a pattern matching algorithm that, for a tree
pattern H and transaction graph G, (i) partitions G into a certain set of induced
subgraphs, (ii) considers a (random) subset of local spanning trees for each induced
graph, and (iii) decides whether H is subtree isomorphic to one of the global span-
ning trees of G obtained by combining its local spanning trees in an appropriate way.
It is inspired by the paradigms developed by Matoušek and Thomas (1992) and by
Shamir and Tsur (1999) for solving subgraph isomorphism for other graph classes.

In a nutshell, we decide the arising pattern matching problem by a dynamic
programming algorithm traversing a rooted tree generated for G in a bottom-up
manner and computing the final solution from partial ones previously calculated. In
our case, the nodes of the rooted tree controlling the evaluation are constructed from
the articulation vertices of G. Each node v of such a tree is associated with the set of
spanning trees of certain blocks of G containing v. For all such local spanning trees
τ , we solve the partial subtree isomorphism problem corresponding to v by carefully
extending the partial subtree isomorphisms already computed for τ . Iterating over
all spanning trees and for all nodes, we can correctly decide subtree isomorphism for
the part of G that is “below” v in the rooted tree associated with G. We prove that
our algorithm decides subgraph isomorphism from H to S correctly, where S is the
set of spanning trees of G that can be obtained from the combinations of the local
spanning trees. Furthermore, our algorithm runs in time polynomial in the combined
size of H, G, and the number of local spanning trees selected. The significance of
this result is that the number of global spanning trees in S can be exponential in
the number of local spanning trees. This property has immediate consequences to
probabilistic and exact frequent subtree mining.

Regarding probabilistic frequent subtree mining, by considering exponentially
many (implicit) global spanning trees instead of polynomially many ones, our tech-
nique has an improved performance in terms of recall over the simple algorithm in
(Welke et al 2018). On the one hand, this improvement is only marginal on molec-

4 Pascal Welke et al.

ular graph datasets, due to the relatively simple graph structure of pharmacological
compounds (cf. Horváth et al 2010; Horváth and Ramon 2010). On the other hand,
however, on threshold graphs, which have applications among others in spectral clus-
tering (see, e.g., von Luxburg 2007), the algorithm presented in this work results in a
much higher recall compared to the simple one in (Welke et al 2018). It is important
to note that the threshold graphs used in our experiments had a structural complex-
ity beyond that of the molecular graphs of pharmacological compounds. Somewhat
surprisingly, none of the state-of-the-art frequent subgraph mining algorithms, which
are very effective otherwise on molecular graphs, were able to produce any output
for threshold graphs in practically feasible time.1 A robust mining algorithm whose
runtime depends not on certain, typically unknown implicit characteristics of the
data, but on some user specified parameters is of high value for practical problems
where the transaction graphs have no (known) specific structural properties that
could be utilized by the mining algorithm. Our algorithm is robust in this sense be-
cause its delay depends only on the number and size of the input graphs and on
the sample size parameter. This latter parameter can thus be used to control the
trade-off between recall and time complexity. In contrast, most state-of-the-art fre-
quent subgraph mining tools are explicitly or implicitly engineered towards certain
structural properties and are therefore not applicable in such a scenario.

Regarding exact frequent subtree mining, we first note that despite more than two
decades of research there are only a few non-trivial theoretical results concerning the
complexity of frequent subgraph mining. In particular, if the transaction graphs are
restricted to forests then frequent connected subgraphs (i.e., trees) can be generated
with polynomial delay (see, e.g., Chi et al 2005). Beyond forests, frequent connected
subgraphs can be listed in incremental polynomial time for graphs of bounded tree-
width (Horváth and Ramon 2010). Using the positive result of Matoušek and Thomas
(1992), one can show that for graphs of bounded tree-width (Robertson and Seymour
1986) and bounded degree, frequent connected subgraphs can actually be generated
with polynomial delay. As a byproduct of our approach, we extend the known positive
complexity results on frequent subgraph mining by a new one formulated for a graph
class that is not only of theoretical, but also of practical interest.

Our result is based on a subgraph isomorphism algorithm that is always correct
if all local spanning trees are considered.2 Accordingly, a sufficient condition for our
frequent pattern mining algorithm to be correct and efficient (i.e., polynomial delay)
is that the input graphs are locally easy; a graph G of size n is locally easy if for all
vertices v of G, the union of the blocks containing v has at most poly(n) spanning
trees. This class of graphs is orthogonal to all graph classes (more precisely, nested
hierarchies) that are defined by a constant upper bound on some monotone graph
property (e.g., graphs of bounded tree-width). A graph property is called monotone
if it is closed under taking subgraphs. By “orthogonality” we mean that it always
contains an infinite number of graphs that are not contained in the other graph class.
Furthermore, it turns out that the class of locally easy graphs includes a number of
interesting and practically relevant graph classes. The most natural example is the
class of forests. Pseudoforests (i.e., graphs in which every connected component has

1 We have observed a similar behavior on Erdős-Rényi graphs (Erdős and Rényi 1959), even
for relatively small value of the edge probability (cf. Welke et al 2018).

2 We recall that the problem of deciding whether a tree is subgraph isomorphic to a graph G
is NP-complete in general (see, e.g., Garey and Johnson 1979) and remains computationally
intractable even for very simple graphs, e.g., when G is a cactus graph (Akutsu 1993).

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 5

at most one cycle) and their generalizations, cactus graphs (i.e., in which all edges
belong to at most one simple cycle) of bounded cyclic block degree (i.e., the maximum
number of cyclic blocks3 sharing a vertex is bounded by a constant) are some further
straightforward subclasses of locally easy graphs. Other examples include the class
of d-tenuous outerplanar graphs (Horváth et al 2010) of bounded cyclic block degree
and that of k-easy graphs of bounded cyclic block degree, where a graph is k-easy for
some constant k ≥ 0 integer if all blocks have O

(
nk

)
spanning trees. Our positive

result on mining locally easy graphs is thus another step towards exploring the border
between tractable and intractable fragments of the frequent pattern mining problem.
We conjecture that generalizing our positive result to any natural graph class beyond
locally easy graphs is at least as difficult as solving the P vs. NP problem.

Outline The rest of the paper is organized as follows. In Section 2 we provide the
necessary background, describe a generic levelwise search algorithm mining frequent
patterns, and state sufficient conditions for its efficiency. We present our subtree
isomorphism algorithm in Section 3 and prove some of its algorithmic properties.
Using this pattern matching algorithm, in Section 4 we describe our mining algo-
rithm enumerating probabilistic frequent subtrees in arbitrary graph databases with
polynomial delay and empirically compare its runtime and recall on threshold graphs
with that of our algorithm from (Welke et al 2018). We discuss exact frequent sub-
graph mining for locally easy graphs in Section 5, together with some theoretical
and practical properties of this graph class. Finally we conclude in Section 6 and
mention some open problems for further research.

2 Preliminaries

In this section we collect all necessary preliminaries and fix the terminology and
notation used in the paper. In particular, we recall some basic notions from graph
theory (see, e.g., Diestel 2012), formally define the pattern mining problem consid-
ered in this work, give a generic mining algorithm for this problem, and formulate
sufficient conditions for the efficiency of this algorithm.

Graphs An undirected (resp. directed) graph G consists of a finite set V (G) of vertices
and a set E(G) ⊆ {X ⊆ V (G) : |X| = 2} (resp. E(G) ⊆ V (G) × V (G)) of edges.
We consider simple graphs, i.e., loops and parallel edges are not permitted. Unless
otherwise stated, by graphs we mean undirected graphs. An edge {u, v} ∈ E(G) will
be denoted by uv and the set of neighbors of a vertex v by N (v). A subgraph of G is
a graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G); G′ is a subgraph of G induced
by a set V ′ ⊆ V (G) if V (G′) = V ′ and uv ∈ E(G′) if and only if uv ∈ E(G) for all
u, v ∈ V ′. Such an induced subgraph is denoted by G[V ′]. A labeled graph is a graph
G such that all vertices and all edges are labeled with the elements of some finite
set. Examples of labeled graphs include molecular graphs, protein-protein interaction
graphs, social networks, the Web graph etc. To keep the notation and description
concise, we will state all results for unlabeled graphs by noting that all our arguments
naturally apply to labeled graphs as well.

3 A cyclic block is a maximal biconnected subgraph with at least three vertices.

6 Pascal Welke et al.

An articulation vertex v ∈ V (G) is a vertex such that its removal increases the
number of connected components of G. A graph is biconnected if it is connected and
the removal of any vertex does not disconnect it. A block is a maximal subgraph of
G that is biconnected (i.e., it contains no articulation vertex with respect to itself).
A cyclic block is a block with at least three vertices.4 A bridge is an edge that does
not lie on any cycle in G. Accordingly, a block is either cyclic or it is a bridge or an
isolated vertex.

Two graphs G1, G2 are isomorphic, if there is a bijection φ : V (G1) → V (G2) such
that uv ∈ E(G1) if and only if φ(u)φ(v) ∈ E(G2) for all u, v ∈ V (G1). G1 is subgraph
isomorphic to G2, denoted G1 ≼ G2, if G2 has a subgraph that is isomorphic to
G1. Finally, a graph class is a set of pairwise non-isomorphic graphs that share some
common property (e.g., they have tree-width at most k for some integer k > 0).

Frequent Connected Subgraph Mining In this work, we study a special case of the
following problem:

Frequent Connected Subgraph Mining (FCSM) Problem: Given a fini-
te set D ⊆ G for some graph class G and an integer threshold t > 0, list all
graphs P ∈ P for some graph class P, called the pattern class, that are subgraph
isomorphic to at least t graphs in D.

The patterns in the output must be pairwise non-isomorphic. In contrast to the
standard problem definition (see, e.g., Horváth and Ramon 2010), we regard a more
general problem parameterized by the pattern class P and focus on the special case
of the problem above that P is the class of trees. This special case will be referred
to as Frequent Subtree Mining (FTM) Problem. Though in this paper we
study the FTM problem, in this section we consider the more general FCSM prob-
lem. The reason is that below we give an algorithm for the generic FCSM problem
and formulate sufficient conditions for G and P that guarantee the algorithm to
generate frequent patterns with polynomial delay. These conditions may be of some
independent interest for the study of other special cases of the FCSM problem.

Note that the mining problem above is a listing problem. For such problems, the
following complexity classes are distinguished in the literature (see, e.g., Johnson
et al 1988). Suppose an algorithm A for the FCSM problem gets D and t as input
and outputs a sequence O = [p1, p2, · · · , pn] of patterns.5 Then A generates O

– with polynomial delay, if the time before the output of p1, between the output
of any two consecutive elements of O, and between the output of pn and the
termination of A is bounded by a polynomial of size(D),

– in incremental polynomial time, if the algorithm outputs p1 in time bounded by
a polynomial of size(D), the time between outputting pi and pi+1 is bounded
by a polynomial of size(D) +

∑i
j=1 size(pj), and the time between the output

of pn and termination is bounded by a polynomial of size(D) + size(O),
– in output polynomial time, if the algorithm outputs O in time bounded by a

polynomial of the combined size of D and O.

Clearly, polynomial delay implies incremental polynomial time, which, in turn, im-
plies output polynomial time. It is an open problem whether the first two complexity

4 This implies that each vertex in a cyclic block lies on at least one cycle in G.
5 For sake of simplicity, we formulate the definition for n > 0.

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 7

Algorithm 1 A generic levelwise graph mining algorithm.
input: D ⊆ G for some graph class G, a pattern class P, and an integer t > 0
output: all frequent subgraphs of D that are in P

1: let S0 ⊆ P be the set of frequent pattern graphs consisting of a single vertex
2: for (l := 0; Sl ̸= ∅; l := l + 1) do
3: set Sl+1 := ∅ and Cl+1 := ∅
4: for all P ∈ Sl do
5: print P
6: for all H ∈ ρ(P) ∩ P satisfying H /∈ Cl+1 do
7: add H to Cl+1

8: if SupportCount(H,D) ≥ t then
9: add H to Sl+1

classes are identical, or not. In frequent itemset mining, for example, the FP-Growth
algorithm (Han et al 2004) lists frequent patterns with polynomial delay, while the
Apriori algorithm (Agrawal et al 1996) in incremental polynomial time. We note,
however, that the Apriori algorithm can easily be transformed into a polynomial de-
lay algorithm by retaining the output of frequent patterns (cf. Horváth et al 2010).

The FCSM problem and the FTM cannot be solved in output polynomial time;
this follows directly from the related negative result in (Horváth et al 2007). One
way to obtain positive results is to restrict the graph classes G and P in the FCSM
problem. To follow this direction, below we first give a generic levelwise search pattern
mining algorithm and establish sufficient conditions of polynomial delay pattern
generation for this algorithm.

A Generic Mining Algorithm We obtain the main results of this paper by adapting a
generic levelwise search algorithm to our problem setting. Levelwise search (Mannila
and Toivonen 1997) is one of the most common techniques in pattern mining that can
be used to efficiently mine frequent patterns for a broad range of problem settings. Its
most popular application is the Apriori algorithm (Agrawal et al 1996) for frequent
itemset mining. In order to find a pattern in level l + 1, it completely explores all
levels up to l. On the one hand, this strategy is disadvantageous if one is interested
in mining long frequent patterns, on the other hand, in frequent subgraph mining it
allows for an incremental polynomial time pattern generation even for NP-complete
pattern matching operators (Horváth and Ramon 2010).

Algorithm 1 is a generic levelwise search algorithm for the FCSM problem. It is a
slight modification of the algorithm in (Horváth and Ramon 2010); the only changes
are in Lines 1 and 6. It calculates the set of candidate (resp. frequent) patterns of level
l in the set variable Cl (resp. Sl). In Line 6 it computes the set ρ(P) of refinements
of a pattern P obtained from P by extending it with an edge in all possible ways.
That is, it either adds a new vertex w to P and connects it to any vertex in V (P)
by an edge, or it connects two vertices in V (P) that have not been connected yet6.
Clearly, |ρ(P)| is bounded by |V (P)|2. Subroutine SupportCount(H,D) in Line 8
returns the number of graphs G ∈ D with H ≼ G.

It is shown in (Horváth and Ramon 2010) that the original version of Algo-
rithm 1 mines frequent patterns with polynomial delay if patterns and transactions

6 For the case of tree pattern generation, the second type of extension can be omitted, as
it always results in cycles. Hence, in this case |ρ(P)| = |V (P)|.

8 Pascal Welke et al.

satisfy certain conditions. However, these conditions have been formulated for the
case that the pattern and transaction graph classes are the same. Below we give
a theorem generalizing these conditions to the case that they can be different. Its
proof is very similar to that in (Horváth and Ramon 2010). We nevertheless give it
for completeness.

Theorem 1 Let G and P be the transaction and pattern graph classes satisfying the
following conditions:

1. All graphs in P are connected. Furthermore, P is closed downwards under taking
subgraphs, i.e., for all H ∈ P and for all connected graphs H ′ we have H ′ ∈ P
whenever H ′ ≼ H.

2. The membership problem for P can be decided efficiently, i.e., for any graph H

it can be decided in polynomial time if H ∈ P.
3. Subgraph isomorphism in P can be decided efficiently, i.e., for all H1, H2 ∈ P, it

can be decided in polynomial time if H1 ≼ H2.
4. Subgraph isomorphism between patterns and transactions can be decided effi-

ciently, i.e., for all H ∈ P and G ∈ G, it can be decided in polynomial time if
H ≼ G.

Then the FCSM problem can be solved irredundantly with polynomial delay for P
and for all finite subsets D ⊆ G.

Proof Let G and P be two graph classes such that Conditions 1–4 hold. We first
prove that Algorithm 1 is correct (i.e., sound and complete) and irredundant. The
soundness is immediate from Lines 6 and 8. To show the completeness, let H ∈
P be frequent in D. We prove by induction on |E(H)| that it will be generated
by the algorithm. The proof of the base case that H consists of a single vertex is
straightforward by Line 1. For the inductive step we have that H has a vertex with
degree one or an edge that can be removed without disconnecting H. Let H ′ be
the graph obtained from H by deleting such a vertex (and the edge adjacent to it)
or such an edge. By construction, H ′ is connected and hence H ′ ∈ P follows from
Condition 1. Since it is frequent, it will be generated by Algorithm 1 by the induction
hypothesis. Furthermore, as H ∈ ρ(H ′) ∩ P, we have H ∈ C|E(H)| by Lines 6 and 7.
Therefore, H is added to S|E(H)| because it is frequent (Line 9), completing the proof
of completeness. Finally, the proof of irredundancy is immediate from the condition
tested in Line 6 and the proof of polynomial delay is similar to that of the related
Theorem 1 in (Horváth and Ramon 2010). ⊓⊔

Note that the conditions above allow for mining frequent patterns that do not
belong to G. Furthermore, they enable the generation of restricted subsets of all fre-
quent subgraphs. For example, we can mine frequent paths in transaction databases
consisting of trees. We will utilize the latter property when restricting P to trees.

Regarding Condition 4, the complexity of subgraph isomorphism is typically
disregarded by the pattern mining algorithms.7 Efficient algorithms are restricted to
tree databases (see Chi et al 2005, for an overview), while general graph miners (e.g.,
Nijssen and Kok 2005; Kuramochi and Karypis 2004; Zhao and Yu 2008) use methods

7 In fact, most graph miners focus on efficient candidate enumeration, instead of embedding
computation. Here, we go in the opposite direction, focusing on the embedding operator, and
refer the reader to the related work (e.g. Chi et al 2005) for a discussion of efficient candidate
generation.

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 9

with exponential worst-case time bounds that are based on the classic algorithm
by Ullmann (1976) or on some of its extensions (e.g., Cordella et al 1999) to solve
the subgraph isomorphism problem. The literature typically justifies this by showing
experimental results on chemical graph databases, on which most mining systems are
fast. Somewhat surprisingly, as we discuss in Section 4.2, most state-of-the-art graph
mining algorithms are actually limited to molecular graph databases in practice
(Welke et al 2018). In fact, there is no clear way to predict whether the graph miners
in the literature will be fast or inapplicable on a given dataset, which heavily restricts
their usefulness e.g. in a data exploration setting.

Finally, although it is not required by Theorem 1, the complexity of deciding
membership in the transaction class G is a crucial (practical) issue. For some well-
defined graph classes, e.g., graphs of tree-width at most k, membership is computa-
tionally intractable if k is not a constant (Arnborg et al 1987). Therefore deciding
whether a given graph mining algorithm can be applied efficiently (i.e., whether
D ⊆ G) may already be intractable. In practice, the speed of many existing frequent
subgraph mining systems (e.g., Kuramochi and Karypis 2004; Nijssen and Kok 2005)
often depends on some graph properties that are not formally stated and hence not
testable.

3 An Efficient Embedding Operator for Trees

This section is devoted to the support counting step (cf. SupportCount(H,D)
in Line 8) of Algorithm 1. For the FTM problem setting this step reduces to the
following decision problem:

Subtree Isomorphism (SubTreeIso) Problem: Given a tree H (the pattern)
and a graph G (the transaction graph), decide whether or not H ≼ G.

In Theorem 2 below we first claim that SubTreeIso can be decided in time poly-
nomial in the number of local spanning trees of certain induced subgraphs of G. In
Section 4 we then show that the algorithm used in the proof of this result can be
modified in a natural way to decide SubTreeIso with one-sided error in polynomial
time by considering a potentially exponentially large subset of the spanning trees of
G, for any arbitrary graph G. This modified algorithm will allow for efficient proba-
bilistic frequent subtree mining. To state Theorem 2, our main result for this section,
we first introduce the following notation: For a graph G and v ∈ V (G), let fv(G) be
the number of spanning trees in the union of the blocks containing v and define

fmax(G) = max
v∈V (G)

fv(G) . (1)

Theorem 2 The SubTreeIso problem can be solved in time

O
(
f2max(G) · |E(G)| · |V (H)|1.5

)
.

To put Theorem 2 into context, we note that SubTreeIso is a well-known NP-
complete problem (it generalizes e.g. the Hamiltonian path problem). If, however,
the transaction graph is also a tree, the restricted problem belongs to P (see, e.g.,
Shamir and Tsur 1999). This positive result, together with that on generating the
spanning trees of a graph with polynomial delay (Read and Tarjan 1975), implies

10 Pascal Welke et al.

B

r v

y

G

x

a)

T

v

r

yx

b)

v

y

Gv

x

c)

Fig. 1: a) G, b) tree skeleton T , and c) Gv for a small graph G (with respect to r).
In (a), y is the root of the (cyclic) block B. Roots are shown in gray, while vertices
that are not roots are shown in white.

that SubTreeIso is in P if G has polynomially many spanning trees only; just list
all spanning trees τ of G and check if H is subgraph isomorphic to τ . Theorem 2
generalizes this straightforward positive result to graphs that can have exponentially
many spanning trees. To prove Theorem 2, we present Algorithm 2 and show that
it decides the SubTreeIso problem correctly (Lemma 4) and in time stated in the
theorem (Lemma 5).

Algorithm 2 is inspired by the ideas in (Matoušek and Thomas 1992) and (Shamir
and Tsur 1999). Analogously to tree decompositions of bounded tree-width graphs
(see, e.g., Diestel 2012), our dynamic programming algorithm splits G into certain
induced subgraphs and evaluates partial (non-induced) subgraph isomorphisms from
subtrees of H to such subgraphs. The evaluation order of our algorithm is, however,
controlled by a rooted tree skeleton defined on the articulation vertices of G. For
all nodes v of the tree skeleton, the blocks that contain v and are “below” v in
G are replaced by a (local) spanning tree τ in all possible ways. The subproblem
corresponding to v is then solved by carefully combining τ with the spanning trees
considered in the previous level. Iterating over all (local) spanning trees of the blocks,
we can correctly decide SubTreeIso for the part of G that is “below” v. We will
now describe the algorithm and necessary notation.

In what follows, H and G denote a tree and a graph, respectively. We assume
w.l.o.g. that G is connected and that 2 ≤ |V (H)| ≤ |V (G)|, implying that all blocks
of G contain at least two vertices (i.e., a block is either cyclic or it is a bridge). We fix
an arbitrary vertex r ∈ V (G) and will implicitly also consider r, when talking about
G. For a block B of G we define its root v to be the vertex of B with the smallest
distance to r and will refer to B as a v-rooted block. Notice that the condition
|V (G)| ≥ 2 implies that r itself is also a root. For any v ∈ V (G), the subgraph
formed by the set of v-rooted blocks of G is denoted by B(v). Clearly, B(v) can
be empty. On the set of roots of the blocks in G we define a directed graph T as
follows (since G and r have been fixed, we omit them from the notation): For any
u, v ∈ V (T) with u ̸= v, (u, v) ∈ E(T) if and only if there exists a block B with
root v such that u ∈ V (B). We call T the tree skeleton of G (see, also, Figures 1
a) and b)). In the proposition below we show that T is indeed a rooted tree (i.e., a
directed tree with edges directed towards the root). This tree will be used to direct
our dynamic subgraph isomorphism algorithm.

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 11

r

v

y

x

x1x2

y1

y2 y3

y4

G

r

v

y

x

T r

v

v

x y ,

v

x y

x

x1 x2

y

y1

y2 y3

y4

,

y

y1

y2 y3

y4

T S

Fig. 2: A guidance tree T = (T ,S) for the graph G from Fig. 1 a). T is incomplete;
each bag contains at most two local spanning trees. Roots are shown in gray, while
vertices that are not roots are shown in white.

Proposition 1 T is a tree rooted at r.

Proof It suffices to show that for all u ∈ V (T) with u ̸= r, u has outdegree at most 1;
the claim then follows by noting that the outdegree of r is 0 and that T is connected,
as G is connected. Suppose for contradiction that there exists u ∈ V (T), u ̸= r, with
two different parents v1, v2 ∈ V (T). Then there are Bi ∈ B(vi) for i = 1, 2 that
contain u. By maximality, B1 and B2 are edge disjoint. Furthermore, there is a path
P1 (resp. P2) in G connecting r and v1 (resp. v2) that is edge disjoint with B1 (resp.
B2). The union of P1 and P2 together with the paths connecting u with v1 in B1

and u with v2 in B2 contains a cycle intersecting both B1 and B2. But then u, v1,
and v2 all belong to the same (cyclic) block of G, contradicting the maximality of
B1 and B2. ⊓⊔

We need some further concepts. Let v, w ∈ V (G). Then w is below v if all paths
connecting r and w in G contain v. A rooted subgraph Gv of G for v is the subgraph
of G induced by the set of vertices below v (see Figure 1 c) for an example). The
same notation will be used consistently for the pair consisting of the tree pattern H

and some vertex y ∈ V (H), i.e., for any u, y ∈ V (H), Hy
u is the tree obtained from

the tree H rooted at y by keeping the subtree rooted at u. The definitions and the
connectivity of G imply that Gv is connected, Gr = G, and Gw is a single vertex if
and only if w /∈ V (T). A vertex w′ ∈ V (G) is called a child of v, if vw′ ∈ E(G) and
w′ ∈ V (B(v)).

A guidance tree of G is a pair T = (T ,S) such that T is a tree skeleton of G and
S is a family of sets Sv for all v ∈ V (T). That is, all nodes v of T are associated with
a set Sv, called the bag of v. Each Sv is a subset of the set of spanning trees of B(v),

12 Pascal Welke et al.

Algorithm 2 Subgraph Isomorphism from a Tree into a Connected Graph

Input : tree H with |V (H)| > 1 and an arbitrary connected graph G with |V (G)| ≥ |V (H)|
Output: True if H ≼ G; o/w False

Main(H,G):
1: set C := ∅
2: pick a vertex r ∈ V (G) and compute the complete guidance tree T = (T ,S) of G for the

tree skeleton T rooted at r
3: for all v ∈ V (T) in a postorder do
4: for all τ ∈ Sv do // Sv ∈ S is the bag of v in T
5: for all w ∈ V (τ) in a postorder do
6: C := C ∪ Characteristics(v, τ, w)
7: if (Hu

u , τ, w) ∈ C then return True
8: return False

Function Characteristics(v, τ, w):
1: Cτ := ∅
2: for all θ ∈ Θvw(τ) do
3: for all u ∈ V (H) do
4: let τ ′ be the tree satisfying θ = τ ∪ τ ′

5: let Cτ (resp. Cτ ′) be the set of children of w in τ (resp. τ ′) and
Cθ := Cτ ∪ Cτ ′

6: let B = (Cθ∪̇N (u), E) be the bipartite graph with

cu′ ∈ E ⇐⇒ (c ∈ Cτ ∧ (Hu
u′ , τ, c) ∈ C) ∨ (c ∈ Cτ ′ ∧ (Hu

u′ , τ
′, c) ∈ C)

for all cu′ ∈ Cθ ×N (u)
7: if B has a matching that covers N (u) then
8: add (Hu

u , τ, w) to Cτ
9: for all y ∈ N (u) do

10: if B has a matching covering N (u) \ {y} then
11: add

(
Hy

u, τ, w
)

to Cτ
12: return Cτ

called local spanning trees, all rooted at v. If Sv contains all spanning trees of B(v)
for every v ∈ V (T), then T is referred to as a complete guidance tree of G. Figure 2
shows an incomplete guidance tree for the graph from Fig. 1 a). For the remainder of
this section, by guidance trees we always mean complete guidance trees. (Incomplete
guidance trees will be considered in Section 4.)

Let T = (T ,S) be a guidance tree of G, v ∈ V (T), and H be a tree. An iso-
triple8 ξ of H relative to v is a triple (Hy

u , τ, w) such that u ∈ V (H), y ∈ N (u)∪{u},
τ ∈ Sv, and w ∈ V (τ). Let G′ be an induced subgraph of G and τ be a spanning
tree of G′. Then G{G′/τ} denotes the graph obtained from G by removing all edges
of G′ that are not in τ (i.e., by substituting G′ with τ). Now we are able to define
the partial subgraph isomorphisms we are interested in. A v-characteristic is an iso-
triple ξ = (Hy

u , τ, w) relative to v such that there exists a subgraph isomorphism
φ from Hy

u to (G{B(v)/τ})w with φ(u) = w. In the lemma below we provide a
characterization of subgraph isomorphisms from H to G in terms of v-characteristics.
Its proof follows directly from the definitions. (Recall that by guidance trees we mean
complete guidance trees in this section.)

8 Though our terminology is similar to that in (Hajiaghayi and Nishimura 2007), which in
turn is based on the concepts in (Matoušek and Thomas 1992), the definitions of iso-triples
and characteristics in this paper are semantically different from their definitions.

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 13

τ

τ ′

B(v)

B(w)

Gr

v

w x
Hu1

u

H

u

u1

u2 u3 u4 u5

Fig. 3: This figure shows a small graph G with its subgraphs B(v) and B(w)
(depicted by the rounded triangles) on the right. One spanning tree τ of B(v)
and τ ′ of B(w) are shown in red and blue, respectively. The tree pattern H de-
picted on the left is subgraph isomorphic to G. The iso-triple (Hu1

u , τ, w) is a v-
characteristic, as there exists a subgraph isomorphism (depicted by the dashed lines)
from Hu1

u to
(
G{B(v) ∪ B(w)/τ ∪ τ ′}

)
w

. Note that the iso-triple (Hu1
u , τ, w) is not a

w-characteristic, as x ̸∈ V (B(w)).

Lemma 1 Let H be a tree, G be a graph with root r, and T = (T ,S) be a guidance
tree of G such that T is rooted at r. Then H ≼ G if and only if there exists a
v-characteristic (Hu

u , τ, w) for some v ∈ V (T), u ∈ V (H), τ ∈ Sv, and w ∈ V (τ).

Notice that the number of v-characteristics (Hy
u , τ, w) is bounded by a polynomial

in the number of local spanning trees τ . More precisely, there areO (|V (H)| · |V (B(v))|)
v-characteristics for each local spanning tree τ ∈ Sv. We will show how these char-
acteristics can be computed recursively by a post-order traversal of the tree skeleton
T . In order to recover all v-characteristics, the spanning trees of the w-rooted blocks
must carefully be combined with τ when w itself is also a root (i.e., w ∈ V (T)). To for-
malize these considerations, we introduce the following notation. For any v ∈ V (T),
τ ∈ Sv, and w ∈ V (τ) we define Θvw(τ) by

Θvw(τ) :=

{
τ ∪ τ ′ : τ ′ ∈ Sw

}
if w ∈ V (T) \ {v}

{τ} o/w (i.e., if w ̸∈ V (T) or v = w),

where τ ∪ τ ′ is the graph with vertex set V (τ) ∪ V (τ ′) and edge set E(τ) ∪ E(τ ′).
That is, for the case that w ∈ V (T) \ {v}, Θvw(τ) is the set of trees obtained by
“gluing” the local spanning tree τ and τ ′ at vertex w, for all local spanning trees
τ ′ ∈ Sw. The definition is correct, as V (τ)∩V (τ ′) = {w} for this case. Note that if w
is a root vertex different from v then it always has at least one child in B(w), i.e., τ ′
is always a tree with at least one edge. As an example, the combination of the blue
and the red tree in Figure 3 denotes an element of Θvw(τ). In Lemma 2 below we
first provide a characterization of v-characteristics for subtrees Hy

u with y ∈ N (u).

14 Pascal Welke et al.

Lemma 2 Let H be a tree, G be a graph, and T = (T ,S) be a guidance tree of G. An
iso-triple (Hy

u , τ, w) of H is a v-characteristic for some v ∈ V (T) and y ∈ N (u) if and
only if there exists a θ ∈ Θvw(τ) and an injective function ψ from N (u) \ {y} to the
children of w in θ such that for all u′ ∈ N (u) \ {y} there is a subgraph isomorphism
φu′ from Hu

u′ to (G{B(v) ∪ B(w)/θ})ψ(u′) mapping u′ to ψ(u′).

Proof “⇒” Suppose (Hy
u , τ, w) is a v-characteristic for some v ∈ V (T) and y ∈ N (u).

Then, by definition, there is a subgraph isomorphism φ from Hy
u to (G{B(v)/τ})w

with φ(u) = w. Let R be an arbitrary spanning tree of (G{B(v)/τ})v containing
the image φ(Hy

u) as a subtree. Then R[V (B(w))] ∈ Sw and R[V (B(v))] = τ and
hence θ = R[V (B(v))] ∪R[V (B(w))] ∈ Θvw(τ) implying that for all u′ ∈ N (u) \ {y},
φ maps Hu

u′ to (G{B(v) ∪ B(w)/θ})φ(u′). As φ is injective we can set ψ to be the
restriction of φ to N (u) \ {y}. As φ is a subgraph isomorphism, we can set φu′ to be
the restriction of φ to (G{B(v) ∪ B(w)/θ})φ(u′) for all u′ ∈ N (u) \ {y}.

“⇐” Let φ : V (Hy
u) → V ((G{B(v)/τ})w) with φ : u 7→ w and x′ 7→ φu′(x′) for all

u′ ∈ N (u)\{y} and x′ ∈ V (Hu
u′). Since for all u′, φu′ is at the same time a subgraph

isomorphism from Hu
u′ to (G{B(v)/τ})w, it holds that φu′(u′) = ψ(u′). But then, as

ψ is injective, φ is a subgraph isomorphism, implying the claim. ⊓⊔

In Lemma 3 we formulate an analogous characterization for the entire pattern H
(i.e., for y = u). The proof of this lemma is similar to that of Lemma 2.

Lemma 3 Let H, G, and T = (T ,S) be as in Lemma 2. An iso-triple (Hu
u , τ, w) of

H is a v-characteristic for some v ∈ V (T) if and only if there exists a θ ∈ Θvw(τ)
and an injective function ψ from N (u) to the children of w in θ such that for all
u′ ∈ N (u) there is a subgraph isomorphism φu′ from Hu

u′ to (G{B(v) ∪ B(w)/θ})ψ(u′)

mapping u′ to ψ(u′).

Lemma 4 below is concerned with the correctness of Algorithm 2 deciding subtree
isomorphism from a tree into an arbitrary text graph G. We assume without loss of
generality that G is connected.

Lemma 4 (Correctness) Algorithm 2 is correct, i.e., for all trees H and connected
graphs G with 2 ≤ |V (H)| ≤ |V (G)|, it returns True if and only if H ≼ G.

Proof Algorithm 2 first fixes a root r of G (Line 2 of Main) and computes the
complete guidance tree T = (T ,S) of G, where T is rooted at r. By traversing T in a
postorder manner (Line 3), it calculates the set C of v-characteristics for all v ∈ V (T)
(Lines 4–6). We only need to show that C is correct (i.e., complete and sound); the
correctness of the algorithm then follows directly from Line 7 by Lemma 1.

The completeness of C holds by the fact that all possible iso-triples ξ = (Hy
u , τ, w)

relative to v are tested for being v-characteristics (Lines 3, 4, and 5 of Main together
with Lines 3, 7, and 9 of Characteristics). Thus, it remains to show that it is
decided correctly whether or not ξ = (Hy

u , τ, w) is a v-characteristic. We prove this
by double induction on the height hT (v) of v in T and on the height hτ (w) of w
in τ . Depending on whether or not hτ (w) = 0 and hT (v) = 0, four cases can be
distinguished. We only show the base case hT (v) = hτ (w) = 0, denoted (α), and the
most general case hT (v) > 0 and hτ (w) > 0, denoted (β), by noting that the proofs
of the other two cases can be shown by an argumentation similar to the one used for
the most general case.

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 15

(α) For the base case hT (v) = hτ (w) = 0 we have Cθ = ∅ and hence B = (∅∪̇N (u), ∅)
(Lines 5 and 6 of Characteristics). Applying Lemma 2 to this case, ξ is a v-
characteristic if and only if N (u) = {y}, which, in turn, holds if and only if there
is a matching covering N (u) \ {y} in B (Lines 10–11 of Characteristics), as
there are no edges in B.

(β) If hT (v) > 0 and hτ (w) > 0 then Cτ ̸= ∅. Two cases can be distinguished:
i) If w /∈ V (T) then Cτ ′ = ∅ and thus Cθ = Cτ . Applying Lemma 2 to this

case, ξ is a v-characteristic if and only if there exists an injective function
ψ : N (u) \ {y} → Cτ such that for all u′ ∈ N (u) \ {y}, there exist a child
c of w in τ (i.e., c ∈ Cτ) and a subgraph isomorphism φu′ from Hu

u′ to
(G{B(v)/τ})c with φu′(u′) = ψ(u′) = c (i.e., a v-characteristic (Hu

u′ , τ, c)).
By the induction hypothesis, the bipartite graph B is constructed correctly
in Line 6 of Characteristics, and hence ψ exists if and only if there exists
a matching in B covering N (u) \ {y}.

ii) If w ∈ V (T) then Cθ = Cτ ∪ Cτ ′ with Cτ , Cτ ′ ̸= ∅. Then, by Lemma 2, ξ
is a v-characteristic if and only if for all u′ ∈ N (u) \ {y} there exist a child
c of w in θ and an injective function ψ : N (u) \ {y} → Cτ ∪ Cτ ′ such that
there is a subgraph isomorphism φu′ from Hu

u′ to (G{B(v) ∪ B(w)/τ ∪ τ ′})c
with φu′(u′) = ψ(u′) = c. Such a subgraph isomorphism either corresponds
to a v-characteristic (Hu

u′ , τ, c) for c ∈ Cτ , which has already been computed
by the induction hypothesis on hτ (w), or to a w-characteristic (Hu

u′ , τ ′, c) for
c ∈ Cτ ′ , which has already been computed by the induction hypothesis on
hT (v). Hence ψ exists if and only if a matching in B (constructed in Line 6
of Characteristics) covering N (u) \ {y} exists (Lines 10–11 of Charac-
teristics).

The proof for the v-characteristics (Hu
u , τ, w) using Lemma 3 is analog for the

test in Lines 7–8 of Characteristics. ⊓⊔

In Lemma 5 below we show that the runtime of Algorithm 2 is polynomial in the
combined size of H, G, and

f (T) = max
Sv∈S

|Sv| , (2)

where T = (T ,S) is the guidance tree of G computed in Line 2 of Algorithm 2.
Together with Lemma 4 this implies Theorem 2 by noting that f (T) ≤ fmax(G),
where fmax(G) is defined in (1). It is immediate from the definition, that f (T)
cannot be larger than fmax(G). It can, however, be strictly smaller: As an example,
consider Fig. 3, where B(w) contains only a subset of the cyclic blocks containing w
(i.e., it does not contain the block induced by the vertices w, x, v). Here, f (T) = 3
and fmax(G) = 9.

Lemma 5 (Runtime) Algorithm 2 runs in O
(
f2(T) · |E(G)| · |V (H)|1.5

)
time.

Proof Note that the edge sets of the v-rooted blocks of G form a partition of E(G),
i.e.,

E(G) =
∪̇

v∈V (T)

E(B(v)) . (3)

This partition and the tree skeleton T can be computed in linear time (Tarjan
1972). By definition, |Sv| ≤ f (T) for all v ∈ V (T). Thus, as the spanning trees

16 Pascal Welke et al.

of a graph can be generated with linear delay (Read and Tarjan 1975), Sv can be
computed in O (|E(B(v))| · f (T)) time for each v ∈ V (T). Hence, by (3), Main
spends altogether

O (|E(G)| · f (T)) (4)

time for computing the guidance tree T. Furthermore, it calls subroutine Charac-
teristics only

O

 ∑
w∈V (G)

f (T)

 (5)

times because the number of pairs (v, w) considered in Lines 3 and 5 is O (|V (G)|).
Indeed, each vertex w can occur in at most two sets of rooted blocks: In B(v) for
its unique parent v in T (unless w = r) and in B(w) if w is a root itself. Regarding
the complexity of Characteristics, note that |Θvw(τ)| is bounded by f (T) for any
τ ∈ Sv (see Line 2 of Characteristics) and that the bipartite graph B constructed
in Line 6 has at most |N (u)|+ |N (w)| vertices for any θ ∈ Θvw(τ).

The edges of B can be constructed by membership queries to C. We can implement
the set C of characteristics found by the algorithm as a multidimensional array of
polynomial size (in f (T) and |V (G)|) such that each look-up and storage operation
can be performed in constant time. A maximum matching of B can be found in
O
(
|N (w)| · |N (u)|1.5

)
time (Hopcroft and Karp 1973, Thm. 3). Applying the same

trick as in (Chung 1987; Shamir and Tsur 1999) for ordinary subtree isomorphism,
we can answer the matching queries for u and all of its neighbors in Lines 7 and 10 of
Characteristics using a single bipartite matching computation and an additional
operation that is linear in the size of B. Hence, for a vertex w ∈ V (G), function
Characteristics runs in time

O

f (T) · |N (w)| ·
∑

u∈V (H)

|N (u)|1.5
 ⊆ O

(
f (T) · |N (w)| · |E(H)|1.5

)
(6)

= O
(
f (T) · |N (w)| · |V (H)|1.5

)
, (7)

where (6) follows from the handshaking lemma and (7) from the fact that H is a tree.
Thus, by (5) and by another application of the handshaking lemma to G, together
with (4) we obtain an overall time complexity

O
(
f (T)

(
|E(G)|+ f (T) · |E(G)| · |V (H)|1.5

))
which, in turn, is equal to

O
(
f2(T) · |E(G)| · |V (H)|1.5

)
(8)

as claimed. ⊓⊔

Note that in the case that H and G are both trees, f (T) = 1 and hence (8) corre-
sponds to the time complexity of the ordinary subtree isomorphism algorithms given
in (Chung 1987; Matula 1968). We will address the implications of this algorithm
for probabilistic and exact frequent tree mining in the next two sections.

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 17

4 Probabilistic Frequent Subtree Mining

In (Welke et al 2018) we introduced the concept of probabilistic frequent subtrees, a
random subset of frequent trees, and presented an algorithm enumerating this kind
of sound, but incomplete pattern set with polynomial delay. It is based on replacing
each graph in the input with a forest formed by the vertex disjoint union of a random
subset of its spanning trees. On the one hand, the more spanning trees are considered
by the algorithm, the higher the recall of its output is. On the other hand, however,
its delay depends linearly on the number of spanning trees, implying that in order
to guarantee polynomial delay it can consider at most polynomially many spanning
trees per graph. In this section we show that the results from Section 3 allow us to go
beyond this limitation. In particular, in Section 4.1 we propose a boosted probabilistic
frequent subtree mining algorithm that, using a variant of Algorithm 2, implicitly
considers exponentially many spanning trees for the transaction graphs and still
guarantees polynomial delay. In Section 4.2 we empirically compare its performance
to that of the simple algorithm in (Welke et al 2018).

4.1 The Boosted Algorithm

Recall that Algorithm 2 decides the SubTreeIso problem by splitting the input
transaction graph G into certain induced subgraphs and by considering the set of
all local spanning trees for all such induced subgraphs. In case it takes not all, but
only some subsets of the local spanning trees, its output becomes correct only with
respect to the subset of global spanning trees ofG that can be constructed by “gluing”
together the local spanning trees considered in all possible ways. In Theorem 3 below
we formulate a straightforward extension of Theorem 2 to this more general setting
of the SubTreeIso problem.

To state this result, we need the following notion. Let T = (T ,S) be an arbitrary
(i.e, not necessarily complete) guidance tree of G with bag Sv ∈ S for all v ∈ V (T)
and consider the graph T with V (T) = V (G) and E(T) =

∪
v∈V (T)E(τv), where

τv ∈ Sv for all v ∈ V (T). The definitions imply that T is a spanning tree of G.
Hence, the disjoint union of all such spanning trees of G, i.e, which can be obtained
by taking all possible combinations of the local spanning trees in the bags, forms a
forest. We denote this forest by S(T). We are ready to formulate a generalization of
Theorem 2 to arbitrary (i.e., incomplete) guidance trees (see (2) for the definition of
f (T)):

Theorem 3 Let H be a tree, G be a graph, and T = (T ,S) be a guidance tree of G.
Then one can decide whether H ≼ S(T) in time

O
(
f2(T) · |E(G)| · |V (H)|1.5

)
.

Proof Consider Algorithm 3 for the modified pseudocode of Main given in Algo-
rithm 2, using the same subroutine Characteristics. Its input includes T = (T ,S),
instead of G. (Line 2 of Main in Algorithm 2 is accordingly removed.) The proofs
of Lemma 4 and Lemma 5 immediately apply to the partial sets of local spanning
trees as well, implying the correctness and the runtime with respect to S(T). ⊓⊔

18 Pascal Welke et al.

Algorithm 3 Subgraph Isomorphism from a Tree with One-Sided Error

Input : tree H with |V (H)| > 1 and guidance tree T = (T ,S) for some connected graph G
with |V (G)| ≥ |V (H)|

Output: True if H ≼ S(T); o/w False

Main(H,T):
1: set C := ∅
2: for all v ∈ V (T) in a postorder do
3: for all τ ∈ Sv do // Sv ∈ S is the bag of v in T
4: for all w ∈ V (τ) in a postorder do
5: C := C ∪ Characteristics(v, τ, w) // see Algorithm 2
6: if (Hu

u , τ, w) ∈ C then return True
7: return False

Note that Theorem 2 in the previous section is the special case of the theorem
above that T is a complete guidance tree. Furthermore, Theorem 3 is formulated
for deciding subgraph isomorphism from trees into arbitrary graphs with one-sided
error. That is, if Algorithm 3 returns “Yes”, then the answer is always correct;
o/w it may happen that there exists a spanning tree T of G such that H ≼ T , but
H ̸≼ S(T). This property holds also for the algorithm in (Welke et al 2018), which
guarantees efficiency by explicitly considering a polynomial number of (random)
global spanning trees of G. The importance of the result in Theorem 3 above is
that it guarantees polynomial time already for the case that the number of local
spanning trees in the bags of T is bounded by a polynomial of G which, in turn, may
however implicitly represent exponentially many global spanning trees in S(T) (cf.
Section 5 for a straightforward example of this case). This result may be of some
independent interest. Theorem 3 gives rise to the following positive result on efficient
mining of frequent subtrees (without loss of generality, we formulate it for connected
transaction graphs):

Theorem 4 Let D be a finite set of connected graphs, TG = (TG,SG) be a guidance
tree of G for all G ∈ D, and let D′ be the set of forests defined by D′ = {S(TG) :
G ∈ D}. Then for any positive frequency threshold, the set of frequent subtrees of D′

can be generated with delay polynomial in the combined size of the original dataset
D and f (D′) = maxG∈D f (TG).

Proof The correctness and irredundancy are immediate from Theorem 1. Regarding
the complexity, we can apply the arguments used in the proof of Theorem 1 in
(Horváth and Ramon 2010) to the setting considered in the theorem. They imply
that the dominating term in the delay is the complexity of the pattern matching
operator. By Theorem 3, it is polynomial in f (D′) and the size of D, as claimed. ⊓⊔

Clearly, for all positive frequency thresholds, any frequent subtree of D′ is at
the same time a frequent subtree of D as well. (The reverse direction does not hold
for potential incompleteness.) For the particular case, which is in the focus of this
section, that the bags in TG are some random subsets of the corresponding sets of
all local spanning trees, frequent subtrees of D′ will be referred to as probabilistic
frequent subtrees. We note that this definition is different from the one introduced
in (Welke et al 2018). Applying Theorem 4 to this case we have that probabilistic
frequent subtrees can be listed with polynomial delay in the size of D, whenever

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 19

f (D′) is bounded by a polynomial in the size of D. We now discuss some algorithmic
and implementation issues concerning the generation of such random bags.

For the algorithmic aspects of sampling local spanning trees we note that a
spanning tree of any graph B can be generated uniformly at random in expected
time O

(
|V (B)|3

)
using the algorithm of Wilson (1996). We can improve on this

time and achieve a deterministic algorithm with O (|E(B)| · log(|V (B)|)) runtime if
the spanning trees are not required to be drawn uniformly at random. Indeed, just
pick a random permutation of the edge set and apply Kruskal’s minimum spanning
tree algorithm using this edge order (for a detailed discussion see Welke et al 2018).

Regarding the practical implementation of this algorithm, we note that sampling
the spanning trees is actually never the dominating term. Following the idea of
Theorem 4, instead of sampling local spanning trees anew for each invocation of
the embedding operator, we select a root for all G ∈ D in a preprocessing step and
consider the corresponding tree skeleton T of G. For each v ∈ V (T) we sample,
with replacement, l spanning trees of the v-rooted blocks, where l ∈ N is some user
specified parameter. In case of sampling multiple identical local spanning trees for
v-rooted blocks, we keep only one copy to speed up the algorithm. In particular, if all
v-rooted blocks are bridges for some v ∈ T , then the graph induced by the v-rooted
blocks is a tree. In this case, we can safely just use this tree once, instead of sampling
l identical spanning trees without changing the set of computed v-characteristics. We
call such a root trivial.

The global spanning trees in S(T) above, considered implicitly by our algorithm,
are random. They are generated neither uniformly nor independently from the set
of all spanning trees of G, even if we sample the local spanning trees uniformly and
independently at random. This is due to the fact that any random local spanning
tree picked for a non-trivial root contributes to at least two spanning trees in SG,
whenever G (with respect to the fixed root r) has at least two non-trivial roots.
Our experimental results in Section 4.2 below however show that despite this kind
of dependency, the recall increases by increasing values of l.

4.2 Experimental Evaluation

In this section we experimentally demonstrate the advantage of using local spanning
trees instead of global ones in probabilistic frequent subtree mining. In what follows
we will refer to the former technique as boosted probabilistic subtree (BPS) and to the
latter one as probabilistic subtree (PS) mining. In particular, we show for different
values of t that within time t, BPS considers a dramatically larger number of spanning
trees per graph on average compared to PS, resulting in an improvement in terms of
recall of frequent subtrees.

Our experiments clearly indicate that the amount of improvement strongly de-
pends on the structural properties of the transaction graphs at hand. In particular,
the improvement obtained for molecular graphs of small pharmacological compounds
is negligible; we observed this consistently on several such benchmark graph datasets.
As already mentioned, most exact frequent pattern mining algorithms have an ex-
cellent performance on this kind of graphs, with GASTON (Nijssen and Kok 2005)
being notably the fastest. However, all these exact methods seem to be limited to
this particular graph class, as they were unable to produce any frequent patterns in

20 Pascal Welke et al.

Fig. 4: A threshold graph on 30 points in the 2D Euclidean unit square for d = 0.2.

feasible time, even for slightly more complex structures beyond molecular graphs. In
particular, for small neighborhood graphs extracted from social networks, none of
the existing implementations were able to return any frequent patterns. In contrast,
already PS could consistently produce an output having such a high recall9 of fre-
quent patterns that make BPS unnecessary for this other kind of graphs. This is due
to the fact that such neighborhood graphs contain typically a single block only and
hence, BPS and PS behave similarly on them.

If, however, the transaction graphs have exponentially many spanning trees and
several cyclic blocks at the same time, then PS is able to consider only a small fraction
of all spanning trees, implying a negative impact on the recall. Such situations occur,
for example, in case of threshold graphs, which are defined by local neighborhood
relationships between objects in a metric space. Two vertices representing two objects
are connected by an edge if and only if the distance of the corresponding objects is
smaller than some given threshold (see Figure 4 for a threshold graph on 30 two-
dimensional points). This kind of graphs have different practical applications, for
example in spectral clustering (cf. von Luxburg 2007). While in that application
field there are only rules of thumb on how to choose a suitable threshold for a
particular metric and clustering task, one is interested in threshold graphs having
a high edge density within each cluster and a low one among the clusters. This
requirement typically results in threshold graphs having multiple cyclic blocks that
are connected by a few bridges only and hence, in a large number of spanning trees. To
demonstrate the advantage of BPS over PS, we have therefore considered threshold
graphs in our experiments.

In particular, we evaluate our methods on artificial graph data sets that simulate
the two-dimensional Brownian motion over time. To construct such a graph database,
we first draw n points from the unit square {(x, y) : 0 ≤ x, y ≤ 1} independently and
uniformly at random and label them with c different labels10 at random for some
c > 0 integer. Given a parameter d ∈ (0,

√
2], we construct a threshold graph by

connecting two points if and only if their Euclidean distance is at most d. Subsequent
graphs in the database are obtained by (i) moving each point randomly according

9 More precisely, we could calculate only a lower bound using (Sloane 2016) and found that
already it was very close to 1. We omit the details and refer the reader to (Welke 2018) for a
detailed overview and discussion of these results.
10 The number of vertex labels has a non-trivial influence on the number of (non-isomorphic)

spanning trees of graphs and also on the number of frequent patterns in a graph database.

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 21

to a normal distribution with standard deviation µ centered at its former position
and (ii) constructing a threshold graph on the resulting set of points with respect
to the same threshold d as above. If a point would leave the unit square due to its
random move, it is reflected back inside. Hence, a database constructed in this way
depends on the parameters n, c, d, µ, and N , where N is the number of time steps
(or equivalently, the number of graphs in the database). To obtain the dataset, we
generated N = 200 graphs with n = 30 vertices with c ∈ {2, 5, 10, 30} random colors
(i.e., vertex labels). We set d = 0.2 and µ = 0.02, as the threshold graphs induced
by these numbers fulfilled the desirable structural properties discussed above.

We first compare the average number of spanning trees and non-isomorphic span-
ning trees considered by the PS and BPS methods. As the resulting graphs may be
disconnected (see, e.g., Figure 4), we extend our algorithms to this case as follows:
We compute the number of different11 spanning trees considered for each connected
component separately, sum them up, and normalize the result by the number of con-
nected components. To obtain the number of non-isomorphic spanning trees for each
graph, we compute a canonical string for each tree in the above two sets, count the
number of different strings, and again normalize by the number of connected com-
ponents of the graph. Notice that the average number of non-isomorphic spanning
trees calculated in this way can be smaller than 1 (e.g. when G has many singleton
vertices with the same label).

Table 1 shows the average number of sampled spanning trees and that of non-
isomorphic spanning trees for the threshold graph dataset defined above for PS and
BPS. One can see that for all k ∈ {2, 5, 10, 30}, both the average number of sampled
spanning trees and the resulting non-isomorphic spanning trees is much higher for
BPS. For example, for 30 labels and k = 10 we get on average only 4.51 different
spanning trees and 4.06 non-isomorphic spanning trees for PS. On the other hand,
BPS considers on average 2606.08 different and 349.90 non-isomorphic spanning
trees, when sampling k = 10 local spanning trees. In order to obtain a similar
number of non-isomorphic spanning trees on average with PS, one would need to
sample at least 350 global spanning trees per graph.

An interesting observation is that the fraction of non-isomorphic spanning trees
to different trees considered is rather different for PS and BPS. While for PS almost
all sampled trees are non-isomorphic, this fraction drops to below 20% for BPS and
larger values of k. We do not know whether this is because the overall number of non-
isomorphic spanning trees is rather small or because of the fact that the combination
of local spanning trees results in many “similar” global spanning trees due to the
dependency. We assume the latter by stressing that the average number of non-
isomorphic spanning trees is still much higher than what can be achieved with a
reasonable parameter k for PS.

Finally, we investigate the recall of frequent subtree patterns that can be ob-
tained in a given time budget. That is, we fix a (low) frequency threshold θ = 2%
(corresponding to the absolute frequency threshold of 4) and mine (probabilistic)
frequent subtrees on the threshold graph database for increasing values of k until
the algorithm exceeds a runtime budget of 200 seconds. For a given value of k and
for both methods PS and BPS, we repeat the mining algorithm ten times and aver-
age runtime and recall to mitigate for the effects of the random samples. Figure 5

11 Here, two spanning trees T, T ′ are identical if and only if E(T) = E(T ′), not if they are
isomorphic.

22 Pascal Welke et al.

k
2 Labels 5 Labels 10 Labels 30 Labels

PS BPS PS BPS PS BPS PS BPS

2 1.44 4.89 1.44 4.98 1.43 4.81 1.44 4.74
0.94 2.57 0.98 2.59 0.98 2.65 0.99 2.62

3 1.87 29.91 1.87 32.44 1.86 28.13 1.86 31.66
1.33 7.89 1.40 9.15 1.41 8.63 1.41 9.68

4 2.27 118.78 2.27 102.48 2.27 112.12 2.26 100.03
1.70 21.44 1.78 23.82 1.80 29.69 1.81 24.81

5 2.66 243.88 2.66 243.44 2.66 230.08 2.65 265.21
2.04 38.58 2.16 44.67 2.19 53.97 2.20 53.69

6 3.04 510.26 3.03 465.82 3.04 490.62 3.05 498.13
2.40 63.13 2.53 77.55 2.56 91.49 2.60 99.82

7 3.42 865.82 3.43 880.51 3.42 789.28 3.41 883.88
2.73 99.16 2.91 117.07 2.93 129.55 2.96 141.80

8 3.79 1364.81 3.77 1382.15 3.80 1306.57 3.77 1231.39
3.06 147.61 3.24 161.30 3.31 183.91 3.32 187.95

9 4.16 1996.29 4.17 1979.02 4.14 1888.02 4.15 1816.81
3.38 200.06 3.62 251.41 3.65 257.12 3.70 277.92

10 4.51 2717.93 4.51 2744.65 4.51 2868.81 4.51 2606.08
3.79 260.56 3.97 326.28 4.02 364.06 4.06 349.90

Table 1: Average number of spanning trees considered by PS (Welke et al 2018)
and BPS. For each number k of sampled global (resp. local) spanning trees for PS
(resp. BPS) we report the average number of sampled spanning trees per connected
component in the first row and the resulting average number of non-isomorphic
spanning trees per connected component in the second row.

shows the number of frequent patterns found (y-axis) per time (x-axis) for increasing
values of the sampling parameter k. BPS obtains a significantly higher number of
frequent patterns per time than PS for all time budgets up to 200 seconds12. For
example, for 10 vertex colors (i.e., c = 10), we obtain on average 73,396 patterns in
195 seconds for k = 59 using PS and 101,503 patterns for k = 36 for BPS, a 38.3%
increase. Comparing the runtimes necessary to obtain a given amount of frequent
patterns, this difference gets even more concrete. To obtain at least the same number
of frequent patterns returned by PS in at most 200 seconds, BPS needs only 148.77s,
106.74s, 109.52s, and 124.38s, for 2, 5, 10, and 30 vertex colors, respectively. Thus,
on transaction graphs consisting of several dense cyclic blocks, such as, for example,
threshold graphs, BPS clearly has a superior performance over PS.

5 Exact Frequent Subtree Mining

Theorems 1 and 2 give rise to the characterization of a new non-trivial graph class
beyond forests for which the FTM problem can be solved with polynomial delay.
We will now formally define this graph class and investigate some of its properties.
Recall that frequent subtrees can be mined efficiently in forest databases, or more
generally, in graphs having polynomially many spanning trees; this follows from
the results e.g. in (Chi et al 2005; Horváth and Ramon 2010). Such graphs will be
referred to as easy graphs. Except for forests, the class of easy graphs is typically

12 Note that according to this definition, the plots in Figure 5 can end before x = 200.

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 23

0 100 200
0

1

2

3
·104

N
um

be
r

of
Pa

tt
er

ns
2 Labels

BPS (k ≤ 37)

PS (k ≤ 48)

0 100 200
0

0.5

1

·105 5 Labels

BPS (k ≤ 33)

PS (k ≤ 51)

0 100 200
0

0.5

1

·105

Time [s]

30 Labels

BPS (k ≤ 43)

PS (k ≤ 83)

0 100 200
0

0.5

1

·105

Time [s]

N
um

be
r

of
Pa

tt
er

ns

10 Labels

BPS (k ≤ 36)

PS (k ≤ 59)

Fig. 5: Recall curves for 2%-frequent subtrees on the threshold graph database for
PS and BPS for different numbers of vertex colors ranging from 2 to 30. Each dot
corresponds to the average of 10 runs of the respective algorithms for some given
value of k, ranging from 1 to the number indicated in the legends.

uninteresting from a practical viewpoint, as even for relatively simple graphs beyond
forests, the number of spanning trees usually grows exponentially with the number
of vertices. Our positive result extends to this practically and theoretically more
interesting situation by requiring easiness not for the entire graph, but only for local
surroundings of the vertices. Formally, a graph G with n vertices is locally easy if
for all v ∈ V (G), the number of spanning trees of the union formed by the blocks
of G containing v is bounded by a polynomial of n, i.e., fmax(G) = O (poly(n)) (cf.
(1) in Section 3 for the definition of fmax(G)). In particular, for the case that it is
bounded by p(n) for some polynomial p (resp. by n) we will speak of locally p-easy
(resp. locally linearly easy) graphs. Clearly, all easy graphs are locally easy, but a
locally easy graph may contain exponentially many spanning trees (see Figure 6 for
an example). We have the following result:

Theorem 5 The FTM problem can be solved with polynomial delay for locally easy
transaction graphs.

24 Pascal Welke et al.

. . .

1

120

2
...

Fig. 6: A locally easy graph with exponentially many spanning trees on the left and
a locally linearly easy graph of tree-width 4 on the right.

Proof By Theorem 1, Algorithm 1 solves the FTM problem for locally easy trans-
action graphs with polynomial delay whenever all conditions required are fulfilled.
Conditions 1 and 2 of Theorem 1 are straightforward when P is restricted to trees
and Condition 3 follows e.g. from the results of Shamir and Tsur (1999). Finally,
Theorem 2 immediately implies Condition 4 from tree patterns into locally easy
graphs. ⊓⊔

Below we discuss some important properties of locally easy graphs implying the
theoretical and practical importance of Theorem 5 above.

(P1) The membership problem for locally easy graphs (i.e., whether a graph is lo-
cally easy or not) can be decided in cubic time, implying that it can be checked in
polynomial time for any graph database D whether or not Theorem 5 is applicable
to D. More precisely, let G be a graph with |V (G)| = n and p be some polynomial.
One can decide in cubic time whether G is locally p-easy by performing the follow-
ing steps: (i) Compute first the set of all blocks of G, (ii) calculate the number of
spanning trees for all blocks of G separately, and (iii) check for all v ∈ V (G) whether
the product of these values for all blocks sharing v is at most p(n). The claim above
then follows by noting that (i) can be solved in linear (Tarjan 1972) and (ii) in cubic
time using Kirchhoff’s theorem (see, e.g., Chap. 5.6 in Stanley and Fomin 1999).

(P2) Locally easy graphs may contain exponentially many spanning trees. As an
example, consider the graph G given in the left-hand side of Figure 6. It is locally
linearly easy (for all v ∈ V (G) there are at most 9 spanning trees in the union of
the (cyclic) blocks containing v), still it has altogether 3O(n) spanning trees. This
and other examples show that our result formulated in Theorem 5 is non-trivial, as
any brute-force pattern matching algorithm that decides whether a tree is subgraph
isomorphic to a locally easy graph G by testing subtree isomorphism for all spanning
trees of G becomes infeasible for such cases.

(P3) The class of locally easy graphs contains some interesting graph classes for
which the FTM problem is computationally tractable. As an example, we mention
the class of almost k-trees of bounded degree, where a graph G is an almost k-tree
for some integer k ≥ 0 if |E(B)| ≤ |V (B)|+ k for all blocks B of G. One can decide
in polynomial time whether a tree is subgraph isomorphic to an almost k-tree of

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 25

bounded degree (Akutsu 1993). Combining this result with Theorem 1 we have that
the FTM problem can be solved with polynomial delay for almost k-trees of bounded
degree. We can obtain this result directly by Theorem 5 as well because the class of
locally easy graphs properly contains that of almost k-trees of bounded degree. The
strength of Theorem 5 is that it generalizes the positive mining result above also to
almost k-trees of unbounded degree that are locally easy.

(P4) The class of locally easy graphs is “orthogonal” to all graph classes that are
defined by a constant upper bound on some monotone graph property. To formalize
this statement, we need some further definitions: A nested hierarchy of the class of
all finite graphs is a family of graph classes H = {Gi : i ≥ 0} such that for all finite
graphsG there exists a non-negative integer i withG ∈ Gi and Gj ⊊ Gj+1 for all j ≥ 0.
The smallest integer i satisfying G ∈ Gi is denoted by IH(G). A nested hierarchy H is
monotone if IH(G1) ≤ IH(G2) whenever G1 ≼ G2, for all graphs G1, G2. The graph
parameters size, order, maximum vertex degree, tree-width, number of spanning trees
of a graph are some straightforward examples inducing monotone nested hierarchies;
an example for some IH resulting in a non-monotone nested hierarchy would be the
number of connected components or blocks. Using the above concepts, we are ready
to formulate the following claim:

Claim For any monotone nested hierarchy H = {Gi : i ≥ 0} and for any integer
k ≥ 0 there are infinitely many locally linearly easy graphs that are not in Gk.

Proof Let H be a monotone nested hierarchy and let G1, G2, G3, . . . be a sequence of
graphs with IH(Gi) = i. Such a sequence exists by definition. For any i ∈ N, adding
new leafs to Gi does not decrease IH(Gi), as H is monotone. However, it will eventu-
ally decrease the local easiness of the resulting graph: Recall from (1) in Section 3 that
for all i ≥ 0, fmax(Gi) is the maximum number of spanning trees in the union of the
blocks of Gi containing v, over all v ∈ V (Gi). By adding max(0, fmax(Gi)−|V (Gi)|)
new leafs (i.e., vertices of degree 1) to Gi in an arbitrary way, we obtain a locally
linearly easy graph G′

i with IH(G′
i) ≥ i and fmax(G

′
i) = fmax(Gi) for all i ≥ 0. Thus,

for any k ∈ N, G′
k+j /∈ Gk for all j ≥ 1, implying the claim. ⊓⊔

We illustrate the idea in the proof above on the monotone nested hierarchy
induced by the tree-width (see, e.g., Diestel 2012, for the definition of tree-width).
Consider the graph G obtained from the complete graph Kk on k vertices for some
k ≥ 3 by adding kk−2 − k leafs to some vertex of Kk (see the right-hand side of
Figure 6 for an example with k = 5). On the one hand, the construction does not
increase the tree-width, i.e., the tree-width of G is equal to that of Kk. On the other
hand, as Kk has exactly kk−2 spanning trees by Cayley’s formula, G is a locally
linearly easy graph. Since the construction in this example holds for any k ≥ 3, local
easiness implies no constant upper bound on the tree-width.

The choice of tree-width in the example above is especially interesting because fre-
quent subtrees of bounded degree can be generated with polynomial delay from graphs
of bounded tree-width. This follows from Theorem 1 together with the positive re-
sult of Matoušek and Thomas (1992) on subgraph isomorphism between bounded
tree-width graphs. This and other examples provide evidence that our main result
formulated in Theorem 5 extends (or complements) several results on the (fixed pa-
rameter) tractability of the FTM problem for various monotone nested hierarchies
for which subgraph isomorphism from a tree can be decided in polynomial time. We

26 Pascal Welke et al.

note, for example, that in the systematic overview of the parameterized complexity
of subgraph isomorphism by Marx and Pilipczuk (2014), 9 out of the 10 parame-
ters considered result in monotone nested hierarchies. Hence, our result extends the
positive results in their work to the case that the patterns are restricted to trees.

(P5) A large fraction of the molecular graphs considered in chemoinformatics are
actually locally easy. To confirm this observation, we first provide a sufficient condi-
tion for local easiness. Let G be a graph of size n and let c, k ≥ 0 be integers. Then
G is degree-k easy if each block of G has at most O(nk) spanning trees and it is of
cyclic block degree-c if each vertex v of G belongs to at most c distinct cyclic blocks.13

Clearly, if G is degree-k easy and of cyclic block degree-c for some constants k and
c, then G is locally easy.

Many of the chemical graphs of pharmacological compounds are d-tenuous out-
erplanar graphs for d ≤ 5 (Horváth et al 2010). Informally, each cyclic block of
such a graph is a planar graph composed of a single Hamiltonian cycle and at most
d non-crossing diagonals. Clearly, d-tenuous outerplanar graphs are degree-(d + 1)
easy. Furthermore, chemical graphs have typically some very small cyclic block de-
gree because they have small vertex degree. Thus, most chemical graphs are locally
easy. To support this claim experimentally, we investigated local easiness for the
graphs in the Zinc dataset14. Our version of the database contains 8, 946, 757 “lead-
like” compounds. We have the following distribution of the molecules with respect
to fmax(G) defined in (1):

0 ≤ fmax(G) < n 8, 640, 166 (96.57%)
n ≤ fmax(G) < n2 302, 541 (3.38%)
n2 ≤ fmax(G) < n3 1, 864 (0.02%)
n3 ≤ fmax(G) 2, 186 (0.02%)

Thus, by our result in Theorem 5, all frequent trees can be generated from almost
all such chemical graphs with polynomial delay. This complements the positive result
of Horváth et al (2010) on mining frequent connected subgraphs from d-tenuous
outerplanar graphs with respect to a constrained subgraph isomorphism operator.

6 Concluding Remarks

The results described in this paper raise several interesting practical and theoretical
issues for further studies. In particular, as we demonstrated on threshold graphs in
Section 4.2, the technique presented can be used to efficiently improve the recall of
probabilistic frequent subtrees by considering exponentially many spanning trees.
While the amount of improvement is impressive for threshold graphs and for other
potential graph classes satisfying the structural properties discussed in Section 4,
it is marginal e.g. for chemical or small neighborhood graphs extracted from social
networks. This raises the practical question whether one can design an algorithm
able to decide quickly for any transaction database whether probabilistic frequent
subtrees should be generated by sampling global (cf. Welke et al 2018) or rather local
(cf. Section 4) spanning trees.
13 Note that the vertex degree is an upper bound on the cyclic block degree.
14 Obtained from http://zinc.docking.org

http://zinc.docking.org

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 27

It would be interesting to understand how far the positive result of this work
on exact frequent subtree mining can be generalized to other pattern classes beyond
trees. Perhaps the first natural question towards this direction would be to ask
whether it is possible to generate frequent locally easy subgraphs in locally easy
transaction graphs with polynomial delay. In order to calculate the v-characteristics
for a root vertex v with respect to a vertex u in the pattern, our algorithm combines
at most two sets of local spanning trees at any time and assumes that neither u nor
the vertices in its local environment are contained in a cycle. Therefore, in order to
apply the algorithm to the more general patterns of locally easy graphs, we need to
work with the spanning trees of certain local environments of u. However, in contrast
to the transaction graphs, it may happen that such spanning trees are composed of
the combination of the spanning trees of the blocks for a non-constant number of root
vertices of the pattern graph. In such a case, an exponential number of spanning trees
must be processed. This indicates that, if it is possible at all, such a generalization
would require some more sophisticated approach.

An Open Problem Finally we give arguments clearly indicating the significance and
difficulty of generalizing the positive result in Theorem 5 to transaction graphs be-
yond locally easy graphs. We suspect that obtaining such a generalization is at least
as hard as solving the millennium problem P versus NP. In particular, it is natu-
ral to ask whether frequent subtrees can be generated with polynomial delay also
from transaction graphs for which we only require the number of spanning trees per
block to be bounded by a polynomial in the size of the whole graph (i.e., we do
not assume any constant upper bound on the cyclic block degree). In contrast to
locally easy graphs, subgraph isomorphism from trees into this type of more general
graphs becomes NP-complete, even for the very simple class of cactus graphs (i.e., in
which each cyclic block is a simple cycle, Akutsu 1993). We do not know the answer
to the question above, not even to the case of cactus transaction graphs. We can,
however, show the importance and high difficulty of this open problem by discussing
the potential two answers separately:

(i) Suppose the problem can be solved with polynomial delay. An important imme-
diate consequence of this result would be that polynomial delay frequent pattern
enumeration is possible even for NP-complete pattern matching operators, solv-
ing an open problem (cf. Horváth and Ramon 2010).

(ii) Suppose it cannot be solved with polynomial delay. Then, as the class of trees
satisfies Conditions 1–3 of Theorem 1, by contraposition we have that Condi-
tion 4 of Theorem 1 does not hold, i.e., the corresponding subgraph isomorphism
problem is not in P. But this would immediately imply that P ̸= NP, indicating
the high difficulty of proving this case, as the subgraph isomorphism problem lies
in NP for all pattern and text graph classes. Note that this consideration applies
also to the particular case of cactus transaction graphs.

We conjecture that case (ii) holds, that is, polynomial delay pattern generation
is impossible for computationally intractable pattern matching operators. This is
certainly true for graph classes for which the Hamiltonian path problem is NP-
complete (assuming P ̸= NP).15 If our conjecture is true, then

15 We note that the Hamiltonian path problem is polynomial for the case of cactus graphs,
making them an especially interesting candidate graph class.

28 Pascal Welke et al.

(a) in case of intractable pattern matching operators, the primary question should
be whether the pattern mining problem at hand can be solved in incremental
polynomial time, rather to prove that polynomial delay pattern mining is not
possible and

(b) even for very simple graph classes, the cyclic block degree of the transaction graphs
is a crucial parameter for polynomial delay frequent pattern mining.

References

Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI (1996) Fast discovery of association
rules. In: Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, pp 307–
328

Akutsu T (1993) A polynomial time algorithm for finding a largest common subgraph of almost
trees of bounded degree. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences 76(9):1488–1493

Arnborg S, Corneil DG, Proskurowski A (1987) Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic Discrete Methods 8(2):277–284, DOI 10.1137/0608024

Bringmann B, Zimmermann A, De Raedt L, Nijssen S (2006) Don’t be afraid of simpler
patterns. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases (PKDD) Proceedings, Springer,
Lecture Notes in Computer Science, vol 4213, pp 55–66, DOI 10.1007/11871637_10

Chi Y, Muntz RR, Nijssen S, Kok JN (2005) Frequent subtree mining - an overview. Funda-
menta Informaticae 66(1–2):161–198

Chung MJ (1987) O(n2.5) time algorithms for the subgraph homeomorphism problem on trees.
Journal of Algorithms 8(1):106–112, DOI 10.1016/0196-6774(87)90030-7

Cordella LP, Foggia P, Sansone C, Vento M (1999) Performance evaluation of the VF
graph matching algorithm. In: International Conference on Image Analysis and Processing
(ICIAP), IEEE Computer Society, pp 1172–1177, DOI 10.1109/ICIAP.1999.797762

Deshpande M, Kuramochi M, Wale N, Karypis G (2005) Frequent substructure-based ap-
proaches for classifying chemical compounds. Transactions on Knowledge and Data Engi-
neering 17(8):1036–1050, DOI 10.1109/tkde.2005.127

Diestel R (2012) Graph Theory, 4th Edition, Graduate texts in mathematics, vol 173. Springer
Erdős P, Rényi A (1959) On random graphs I. Publicationes Mathematicae 6:290–297
Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman
Hajiaghayi M, Nishimura N (2007) Subgraph isomorphism, log-bounded fragmentation,

and graphs of (locally) bounded treewidth. Journal of Computer and System Sciences
73(5):755–768, DOI 10.1016/j.jcss.2007.01.003

Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: A
frequent-pattern tree approach. Data Mining and Knowledge Discovery 8(1):53–87, DOI
10.1023/b:dami.0000005258.31418.83

Hopcroft JE, Karp RM (1973) An n^5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing 2(4):225–231, DOI 10.1137/0202019

Horváth T, Ramon J (2010) Efficient frequent connected subgraph mining in graphs of bounded
tree-width. Theoretical Computer Science 411(31–33):2784–2797, DOI 10.1016/j.tcs.2010.
03.030

Horváth T, Bringmann B, Raedt LD (2007) Frequent hypergraph mining. In: Muggleton S,
Otero RP, Tamaddoni-Nezhad A (eds) Inductive Logic Programming (ILP) Revised Se-
lected Papers, Springer, Lecture Notes in Computer Science, vol 4455, pp 244–259, DOI
10.1007/978-3-540-73847-3_26

Horváth T, Ramon J, Wrobel S (2010) Frequent subgraph mining in outerplanar graphs. Data
Mining and Knowledge Discovery 21(3):472–508, DOI 10.1007/s10618-009-0162-1

Johnson DS, Papadimitriou CH, Yannakakis M (1988) On generating all maximal independent
sets. Information Processing Letters 27(3):119–123, DOI 10.1016/0020-0190(88)90065-8

Kramer S, Lavrač N, Flach P (2001) Propositionalization approaches to relational data mining.
In: Džeroski S, Lavrač N (eds) Relational Data Mining, Springer, pp 262–291, DOI 10.1007/
978-3-662-04599-2_11

Probabilistic and Exact Frequent Subtree Mining in Graphs Beyond Forests ⋆ 29

Kuramochi M, Karypis G (2004) An efficient algorithm for discovering frequent subgraphs.
Transactions on Knowledge and Data Engineering 16(9):1038–1051, DOI 10.1109/TKDE.
2004.33

von Luxburg U (2007) A tutorial on spectral clustering. Statistics and Computing 17(4):395–
416, DOI 10.1007/s11222-007-9033-z

Mannila H, Toivonen H (1997) Levelwise search and borders of theories in knowledge discovery.
Data Mining and Knowledge Discovery 1(3):241–258, DOI 10.1023/a:1009796218281

Marx D, Pilipczuk M (2014) Everything you always wanted to know about the parameterized
complexity of Subgraph Isomorphism (but were afraid to ask). In: Mayr EW, Portier N
(eds) International Symposium on Theoretical Aspects of Computer Science (STACS),
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, LIPIcs, vol 25, pp 542–553, DOI
10.4230/LIPIcs.STACS.2014.542

Matoušek J, Thomas R (1992) On the complexity of finding iso-and other morphisms for partial
k-trees. Discrete Mathematics 108(1–3):343–364, DOI 10.1016/0012-365x(92)90687-b

Matula DW (1968) An algorithm for subtree identification. Siam Review 10:273–274
Nijssen S, Kok JN (2005) The gaston tool for frequent subgraph mining. Electronic Notes in

Theoretical Computer Science 127(1):77–87, DOI 10.1016/j.entcs.2004.12.039
Read RC, Tarjan R (1975) Bound on backtrack algorithms for listing cycles, paths, and span-

ning trees. Networks 5:237–252
Robertson N, Seymour PD (1986) Graph minors. II. algorithmic aspects of tree-width. Journal

of Algorithms 7(3):309–322, DOI 10.1016/0196-6774(86)90023-4
Shamir R, Tsur D (1999) Faster subtree isomorphism. Journal of Algorithms 33(2):267–280,

DOI 10.1006/jagm.1999.1044
Sloane NJA (2016) The Online Encyclopedia of Integer Sequences. A000055: Number of trees

with n unlabeled nodes. Online, URL http://oeis.org/A000055, accessed 2016-11-18
Stanley RP, Fomin S (1999) Enumerative Combinatorics, Cambridge Studies in Advanced

Mathematics, vol 2. Cambridge University Press, DOI 10.1017/CBO9780511609589
Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM Journal on Computing

1(2):146–160
Ullmann JR (1976) An algorithm for subgraph isomorphism. Journal of the ACM 23(1):31–42,

DOI 10.1145/321921.321925
Welke P (2018) Efficient frequent subtree mining beyond forests. PhD thesis, University of

Bonn
Welke P, Horváth T, Wrobel S (2015) On the complexity of frequent subtree mining in very

simple structures. In: Davis J, Ramon J (eds) Inductive Logic Programming (ILP) Revised
Selected Papers, Springer, Lecture Notes in Computer Science, vol 9046, pp 194–209, DOI
10.1007/978-3-319-23708-4_14

Welke P, Horváth T, Wrobel S (2018) Probabilistic frequent subtrees for efficient
graph classification and retrieval. Machine Learning 107(11):1847–1873, DOI 10.1007/
s10994-017-5688-7

Wilson DB (1996) Generating random spanning trees more quickly than the cover time. In:
Miller GL (ed) ACM Symposium on the Theory of Computing (STOC) Proceedings, ACM,
pp 296–303, DOI 10.1145/237814.237880

Zhao P, Yu JX (2008) Fast frequent free tree mining in graph databases. World Wide Web
11(1):71–92, DOI 10.1007/s11280-007-0031-z

http://oeis.org/A000055

	Introduction
	Preliminaries
	An Efficient Embedding Operator for Trees
	Probabilistic Frequent Subtree Mining
	Exact Frequent Subtree Mining
	Concluding Remarks

