
On the Complexity of Frequent Subtree Mining
in Very Simple Structures

Pascal Welke1, Tamás Horváth1,2, and Stefan Wrobel2,1

1 Dept. of Computer Science, University of Bonn, Germany
2 Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany

Abstract. We study the complexity of frequent subtree mining in very
simple graphs beyond forests. We show for d-tenuous outerplanar graphs
that frequent subtrees can be listed with polynomial delay if the cycle
degree, i.e., the maximum number of blocks that share a common vertex,
is bounded by some constant. The crucial step in the proof of this positive
result is a polynomial time algorithm deciding subgraph isomorphism
from trees into d-tenuous outerplanar graphs of bounded cycle degree. We
obtain this algorithm by generalizing the algorithm of Shamir and Tsur
that decides subgraph isomorphism between trees. Our results may also
be of some interest to algorithmic graph theory, as they indicate that even
for very simple structures, the cycle degree is a crucial parameter for the
tractability of subgraph isomorphism. We also discuss some interesting
problems towards generalizing the positive result of this work.

1 Introduction

One of the central problems of graph mining is the frequent connected subgraph
mining (FCSM) problem defined as follows: Given a setD of graphs, called trans-
action graphs, from some graph class G and some integral frequency threshold
t > 0, generate all connected graphs that are subgraph isomorphic to at least t
graphs in D. We require the patterns in the output to be unique up to isomor-
phism.

This problem is of high relevance to Inductive Logic Programming. Indeed,
each transaction graph G ∈ D can be regarded as an intensional database DG

over a relational vocabulary consisting of a set of constants, a set of unary,
and a set of binary predicate symbols corresponding to the vertices, the vertex
labels, and the edge labels of the graphs in D, respectively. Furthermore, all
patterns P can be viewed as goal clauses, or equivalently, as Boolean conjunctive
queries over the same vocabulary. Since for any such P and DG, the first-order
logical implication P |= DG becomes equivalent to subsumption between the
clauses corresponding to P and DG [7], which, in turn, is equivalent to relational
homomorphism (cf. [14]), the FCSM problem can be regarded as a special case
of the problem of generating all frequent Boolean conjunctive queries in the
learning from interpretations setting with the additional constraint that the
logical consequence (or pattern matching) operator is defined by subsumption
under object identity (see, e.g., [4, 6]).

The FCSM problem has been intensively studied over the past two decades
by the data mining community, with the primary goal of designing practical al-
gorithms for different problem settings. Despite the intensive research effort, its
complexity aspects are still not well understood. For example, there are only a
few non-trivial positive results about special cases of the FCSM problem when
frequent connected subgraphs are required to be generated with polynomial de-
lay. Polynomial delay pattern enumeration means that the delay between gen-
erating two consecutive patterns is bounded by a polynomial in the size of D.
One of the well-known such cases is that the transaction graphs are restricted to
forests [3]. The goal of this work is to generalize this positive result. In particular,
we concentrate on the following question that, to the best of our knowledge, has
not been investigated so far: How far can we go beyond forests when insisting on
polynomial delay frequent pattern generation? We study this question by looking
at very simple transaction and pattern classes.

In particular, we focus on a subclass of d-tenuous outerplanar graphs. A
graph is outerplanar if it can be drawn in the plane in a such way that edges
are allowed to intersect each other only in their endpoints and all vertices can
be reached from outside without crossing any edge. An outerplanar graph is d-
tenuous if it has at most d diagonals per block. This later definition uses the
fact that all blocks (i.e., biconnected components with more than one edge) of
an outerplanar graph can be drawn in the plane as a convex polygon containing
some non-crossing diagonals. We note that d-tenuous outerplanar graphs form
a practically relevant graph class. For example, the molecular graphs of most
pharmacological compounds are d-tenuous outerplanar graphs for some small
d [13].

The main result of this paper is that frequent subtrees can be listed with
polynomial delay from d-tenuous outerplanar graphs of bounded cycle degree.
The cycle degree of a graph is the maximum number of blocks a vertex can
belong to. Our mining algorithm is an adaptation of a generic levelwise search
algorithm to d-tenuous outerplanar graphs of bounded cycle degree. The most
complex part of the algorithm is the pattern matching subroutine. It utilizes
that any block of a d-tenuous outerplanar graph has polynomially many span-
ning trees only. This property, combined with bounded cycle degree, allows for
an efficient algorithm deciding subgraph isomorphism. Though a d-tenuous out-
erplanar graph of bounded cycle degree may have exponentially many spanning
trees, we show that any instance of our more general problem can be decom-
posed with a divide-and-conquer strategy into polynomially many instances of
deciding subgraph isomorphism between trees, which can be solved in polynomial
time [18]. Our technique requires an efficient combination of the blocks’ spanning
trees, as well as a careful assembly of certain partial subgraph isomorphisms.

To put our result in context, we first note that frequent connected subgraph
mining is possible with polynomial delay if the pattern matching is restricted
to a constrained subgraph isomorphism that maps bridges to bridges and differ-
ent blocks to different blocks [13]. This directly implies that frequent subtrees
can be listed with polynomial delay if D consists of forests (see, also, [3]). For

bounded tree-width graphs, a proper generalization of forests, frequent subtrees
can be generated in incremental polynomial time [12] for ordinary subgraph
isomorphism. That is, a next new frequent subtree for this graph class can be
computed in time polynomial in the combined size of the input and the set
of patterns already computed. Beyond forests, however, it is an open question
whether polynomial delay mining of frequent subtrees is possible even for graphs
of bounded tree-width, if the vertex degree is not bounded by some constant.
In fact, the question remains open even for the very simple case of 0-tenuous
outerplanar graphs, also known as cactus graphs. An affirmative answer to this
question would immediately solve the open problem whether polynomial delay
pattern generation is possible for NP-hard pattern matching operators, as it is
an NP-complete problem to decide whether a tree is subgraph isomorphic to a
cactus graph [2]. On the other hand, as shown in Section 4.1, a negative an-
swer would imply that P 6= NP. Regarding the two cases above, we conjecture
that polynomial delay frequent pattern generation is not possible for compu-
tationally intractable pattern matching operators; this is certainly the case for
graph classes for which the Hamiltonian path problem is NP-complete. If this
conjecture holds then the results of this paper imply that even for very simple
structures, the cycle degree of graphs is a crucial parameter that must be taken
into account when designing efficient frequent subgraph mining algorithms. Fur-
thermore, polynomial delay generation of frequent acyclic Boolean conjunctive
queries (i.e., Datalog goal clauses) is possible only for very simple relational
structures in the learning from interpretation setting with subsumption under
object identity [4, 6].

The rest of the paper is organized as follows. In Section 2 we collect the
necessary background and then describe our mining algorithm in Section 3. In
Section 4 we conclude and discuss some interesting problems towards generalizing
our results. Due to space limitations we omit the proof of the correctness and
only sketch the runtime of our pattern matching algorithm.

2 Notions

In this section we fix the terminology and notation used in the paper. We first
recall some standard notions from graph theory (see, e.g., [5]) and then, in Sec-
tion 2.1, formally define the mining problem considered in this work.

An undirected (resp. directed) graph G consists of a finite set V (G) of vertices
and a set E(G) ⊆ {X ⊆ V (G) : |X| = 2} (resp. E(G) ⊆ V (G)×V (G)) of edges.
We consider simple graphs, i.e., loops and parallel edges are not permitted.
Unless otherwise stated, by graphs we mean undirected graphs and denote an
edge {u, v} ∈ E(G) by uv. The set of neighbors of a vertex v is denoted by N (v).
A subgraph of G is a graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G); G′ is
a subgraph of G induced by a set V ′ ⊆ V (G) if V (G′) = V ′ and uv ∈ E(G′) if
and only if uv ∈ E(G) for all u, v ∈ V ′. Such an induced subgraph is denoted
by G[V ′]. A labeled graph is a graph G such that all vertices and all edges are
labeled with some symbols from a finite set. Examples of labeled graphs include

molecular graphs, protein-protein interaction graphs, the Web graph etc. To keep
the notation and description concise, we will state all our results for unlabeled
graphs by noting that all our arguments apply to labeled graphs as well.

Two graphs G1, G2 are isomorphic, if there is a bijection ϕ : V (G1)→ V (G2)
such that uv ∈ E(G1) iff ϕ(u)ϕ(v) ∈ E(G2) for all u, v ∈ V (G1). G1 is subgraph
isomorphic to G2, denoted G1 4 G2, if G2 has a subgraph isomorphic to G1.

A graph class is a set of pairwise non-isomorphic graphs that share some
common property, e.g., they have tree-width at most k for some integer k > 0.
In this paper we will concentrate on the class of outerplanar graphs; a graph
is outerplanar, if (i) it can be drawn in the plane in such a way that edges do
not cross each other except maybe in their endpoints and (ii) every vertex lies
on the outer face. That is, each vertex can be reached from outside without
crossing any edge. A graph G is outerplanar if and only if all its biconnected
components are outerplanar [10]. A biconnected component B of an outerplanar
graph is either a single edge not belonging to a cycle, called bridge, or it is a
maximal induced subgraph of G composed of a single Hamiltonian cycle and
possibly some diagonal edges [10]. Biconnected components of the later type
will be referred to as blocks. A d-tenuous outerplanar graph is an outerplanar
graph in which each block has at most d diagonals. Notice that forests are special
outerplanar graphs.

2.1 The Frequent Connected Subgraph Mining Problem

In this work, we study special cases of the following problem:

Frequent Connected Subgraph Mining (FCSM) Problem: Given a fini-
te set D ⊆ G for some graph class G and an integer threshold t > 0, list
all graphs P ∈ P for some graph class P, called the pattern class, that are
subgraph isomorphic to at least t graphs in D.

The patterns in the output must be pairwise non-isomorphic. In contrast to the
standard problem definition (see, e.g. [12]), we regard a more general problem
parameterized by the pattern class. Though in this paper we are interested in the
case that P is the class of trees, we use here this more general problem setting.
The reason is that in Section 3.1 we give an algorithm for this generic problem
and state conditions guaranteeing efficient pattern mining. These conditions may
be of some independent interest.

Note that the problem above is a listing problem. For such problems, the
following complexity classes are distinguished in the literature (see, e.g., [15]).
Suppose an algorithm A for the FCSM problem gets D and t as input and
outputs a list O = [p1, p2, · · · , pn] of patterns. Then A generates O

– with polynomial delay, if the time before the output of p1, between the out-
put of consecutive elements of O, and between the output of pn and the
termination of A is bounded by a polynomial of size(D),

– in incremental polynomial time, if the algorithm outputs p1 in time bounded
by a polynomial of size(D), the time between outputting pi and pi+1 is

bounded by a polynomial of size(D)+
∑i
j=1 size(pj), and the time between

the output of pn and termination is bounded by a polynomial of size(D) +
size(O).

Clearly, polynomial delay implies incremental polynomial time. It is an open
problem whether the two classes are identical, or not. In frequent itemset mining,
for example, the FP-Growth algorithm [9] lists frequent patterns with polynomial
delay, while the Apriori algorithm [1] in incremental polynomial time. Our special
focus in this work is to establish sufficient conditions for polynomial delay pattern
mining.

3 The Mining Algorithm

In this section we present our algorithm mining frequent tree patterns in d-
tenuous outerplanar graphs of bounded cycle degree with polynomial delay. We
denote the transaction graph class to be considered by Od,c, where c is an upper
bound on the cycle degree of the graphs it contains. More precisely, let G be
a graph and B(G) the set of its blocks. Then the number of distinct blocks
containing a vertex v ∈ V (G), denoted by δC(v), is called the cycle degree of
v. That is, δC(v) := |{B ∈ B(G) : v ∈ V (B)}|. We define the cycle degree of a
graph to be the maximum cycle degree over all its vertices. Notice that the vertex
degree of the graphs in Od,c can be unbounded.

The class Od,c is not only of theoretic, but also of practical interest e.g. in
computational chemistry. For example, for the NCI2012 dataset3 consisting of
265, 242 molecular graphs we have the following cycle degree distribution:

cycle degree #graphs
0 21, 727
1 238, 218
2 5, 099
3 196
4 2

Additionally, most molecular graphs have an outerplanar graph structure
with a small number of diagonals per block [13].

3.1 A Generic Levelwise Search Mining Algorithm

We obtain our positive result by adapting a generic levelwise search mining al-
gorithm to our problem setting. Levelwise search [1] is one of the most popular
techniques in pattern mining that can be used to efficiently mine frequent pat-
terns in a broad range of problem settings. In order to find a pattern in level l+1,
it completely explores all levels up to l. On the one hand, this is disadvantageous
if one is interested in frequent patterns only from level l for some large l, on the
other hand, in frequent subgraph mining it allows for an incremental polynomial
time pattern generation even for NP-complete pattern matching operators [12].
3 cactus.nci.nih.gov/download/nci, Release 4 File Series

Input: D ⊆ G for some graph class G, a pattern class P, and an integer t > 0
Output: all frequent subgraphs of D that are in P

1: let S0 ⊆ P be the set of frequent pattern graphs consisting of a single vertex
2: for (l := 0; Sl 6= ∅; l := l + 1) do
3: set Sl+1 := ∅ and Cl+1 := ∅
4: for all P ∈ Sl do
5: print P
6: for all H ∈ ρ(P) ∩ P satisfying H /∈ Cl+1 do
7: add H to Cl+1

8: if supportCount(H,D) ≥ t then
9: add H to Sl+1

Algorithm 1: A generic levelwise graph mining algorithm.

Algorithm 1 is a generic levelwise search algorithm for the FCSM problem.
It is a slight modification of a related algorithm in [12]; the only changes are in
Lines 1 and 6. It calculates the set of candidate (resp. frequent) patterns of level l
in the set variable Cl (resp. Sl). In Line 6 it computes the set ρ(P) of refinements
of a pattern P obtained from P by extending it with an edge in all possible ways.
That is, it either adds a new vertex w to P and connects it to any vertex in V (P)
by an edge, or it connects two vertices in V (P) that have not been connected
yet. Clearly, |ρ(P)| ∈ O

(
|V (P)|2

)
. Subroutine supportCount(H,D) in Line 8

returns the number of graphs G ∈ D with H 4 G.
It is shown in [12] that the original version of Algorithm 1 mines frequent

patterns with polynomial delay if patterns and transactions satisfy certain con-
ditions. These conditions have however been formulated for the case that the
pattern and transaction graph classes are the same. In the theorem below we
generalize these conditions to the case that they can be different. Due to space
limitation, we only sketch the proof.

Theorem 1 Let G and P be the transaction and pattern graph classes satisfying
the following conditions:

1. All graphs in P are connected. Furthermore, P is closed downwards under
taking subgraphs, i.e., for all H ∈ P and for all connected graphs H ′ we have
H ′ ∈ P whenever H ′ 4 H.

2. The membership problem for P can be decided efficiently, i.e., for any graph
H it can be decided in polynomial time if H ∈ P.

3. Subgraph isomorphism in P can be decided efficiently, i.e., for all H1, H2 ∈
P, it can be decided in polynomial time if H1 4 H2.

4. Subgraph isomorphism between patterns and transactions can be decided ef-
ficiently, i.e., for all H ∈ P and G ∈ G, it can be decided in polynomial time
if H 4 G.

Then the FCSM problem can be solved with polynomial delay for P and for all
finite subsets D ⊆ G.

Proof. Let G and P be two graph classes such that Conditions 1–4 hold. Let P be
a graph. If P 6∈ P or P is not frequent in D then it cannot be part of the output
of Alg. 1 (see Lines 6 and 8, respectively). Now let P ∈ P be frequent in D. If P
has more than one vertex, there is a vertex with degree one or there is an edge
that can be removed without disconnecting P . Inductively, we get a sequence
of edge (and isolated vertex) removals that in reverse order is a sequence of
refinements generating P from a single vertex. By Condition 1, every connected
subgraph of P is in P and is also frequent. Thus, by induction, Algorithm 1
generates and outputs P . The condition in Line 6 ensures that the algorithm
outputs any pattern P at most once up to isomorphism and that P will not be
processed if P 6∈ P. Thus the LevelwiseGraphMining algorithm is correct.

Regarding its runtime, the time between starting and outputting the first
pattern (or termination if there is no frequent single vertex) is linear in the
size of the database. We can count the frequency of single vertices by a single
scan over the database. We now show that the time needed for Lines 6–9 is
polynomial in the size of D. Conditions 1–3 imply that there is a canonical
string representation for all graphs in P that can be computed in polynomial
time. We can store Si and Ci as prefix trees of canonical strings of patterns. In
this way, we can add and look up patterns in Si or Ci in time linear in the size
of the canonical string of a pattern. |ρ(P)| is polynomial in the size of P and
thus, in the size of D. Therefore, by Condition 2, ρ(P) ∩ P can be computed
in polynomial time. H /∈ Cl+1 can be checked in time linear in the size of the
canonical string representation of H. supportCount can be implemented by
iterating over D, checking for each graph G ∈ D if H 4 G, and maintaining a
counter; by Condition 4 it runs in polynomial time. Overall, the time between
printing consecutive patterns and the time between printing the last pattern and
termination is polynomial in the size of D. ut

Notice that the conditions above allow for generating frequent patterns that
do not belong to G. Furthermore, they enable the generation of restricted subsets
of all frequent subgraphs. For example, we can mine frequent paths in transaction
databases consisting of trees. We will utilize the later property when restricting
P to trees. For this case, one can check that P satisfies the first three conditions
(Conditions 1 and 2 are straightforward for trees and Condition 3 follows e.g.
from [18]). Thus, to show that tree patterns can be mined with polynomial delay
in any database of graphs from some graph class G, we only need to show that
Condition 4 holds for trees and for the graphs in G. We state this for G = Od,c in
Theorem 3 in Section 3.2, immediately implying our main result for this work:

Theorem 2. All frequent subtrees can be generated with polynomial delay in
transaction databases from Od,c for constant d and c.

3.2 The Algorithm Deciding Subgraph Isomorphism

The main result of this section is formulated in Theorem 3. Due to space limita-
tions, we omit all proofs and describe only the algorithm implying Theorem 3.

Theorem 3. For any tree H and G ∈ Od,c, it can be decided in polynomial time
whether H 4 G.

For the rest of this section, let G ∈ Od,c be a graph with n vertices and H be
a tree with k > 1 vertices. We can assume without loss of generality that k ≤ n,
as there is no subgraph isomorphism from H to G whenever |V (H)| > |V (G)|,
and that G is connected, as any subgraph isomorphism maps a connected graph
into a connected component. We fix an arbitrary vertex r ∈ V (G) and will
denote the choice of r by Gr. For a biconnected component B we define its
root, denoted ρr(B), to be the vertex of B with the smallest distance to r,
where by distance between two vertices we mean the length of a shortest path
connecting them. Since B is a maximal biconnected subgraph, ρr(B) is unique.
Furthermore, r is always among the roots of biconnected components (recall
that bridges are also biconnected components). B will also be referred to as a
v-rooted biconnected component, where v = ρr(B). The subgraph formed by the
set of v-rooted biconnected components of Gr is denoted by Brv (we omit G from
the notation as it will always be clear from the context). On the set of roots of
all biconnected components in Gr we define a directed graph T rG as follows: For
any u, v ∈ V (T rG) with u 6= v we have (u, v) ∈ E(T rG) if and only if there exists a
biconnected component B in Brv with u ∈ V (B). T rG is a tree (rooted at r) that
will be traversed by the algorithm deciding subgraph isomorphism. Figure 1 a)
and b) show an example of the structures Gr and T rG for a small graph G.

A vertex w is below v with respect to r if all paths in G from r to w contain
v. If r is clear from the context we simply say w is below v. The definitions
imply that every vertex is below itself and that all vertices are below r. A rooted
subgraph Grv of G for a vertex v ∈ V (G) is the subgraph of G induced by the set
of vertices below v, i.e.

Grv = G [{w : w is below v}] .

See Figure 1 c) for an example of Grv. It follows from the definitions and from
the connectivity of G that Grv is a connected graph. Furthermore, the definitions
above imply that Grr = G and that Grw is a single vertex if and only if w /∈
V (T rG).

4 A vertex w ∈ V (G) is called a child of v, if vw ∈ E(G) and w belongs
to a v-rooted biconnected component.

Using the above notions, we now describe our subgraph isomorphism algo-
rithm given in Algorithm 2. It utilizes the fact that for any free tree H and
connected graph G, H 4 G if and only if H is subgraph isomorphic to a span-
ning tree of G. Since G can have exponentially many spanning trees, we cannot
directly apply the subtree isomorphism algorithm given in [18] to all spanning
trees of G. For every vertex v, however, the graph induced by all biconnected
components containing v has only a polynomial number of spanning trees in the
size of G, since both d and c are bounded by constants. Our algorithm decides
subgraph isomorphism by computing and combining (partial) subgraph isomor-
phisms from subtrees of the pattern to such spanning trees rooted at v in a
bottom up way.
4 We recall that by condition, G contains at least one edge.

B

r y
ρr(B)

Gr

x

a)

T rG

y

r

ρr(B)x

b)

y
ρr(B)

Gry

x

c)

Fig. 1. Gr, T rG and Gry for a small graph G. ρr(B) is the root of the block B. Roots
are shown in gray, while vertices that are not roots are shown in white.

We now formally define the type of partial subgraph isomorphisms used by
our algorithm.5 Let G′ be an induced subgraph of G and τ be a spanning tree
of G′. Then G|τ denotes the graph obtained from G by removing all edges of G′

that are not in τ . We will often choose G′ = Brv for some root v and spanning tree
τ of Brv. For this case Grv|τ denotes the graph obtained from Grv by removing all
edges from Brv that are not in τ . As an example, Grv|τ in Fig. 2 arises from G by
removing the edges rv, vx and the vertex r. Finally, an iso-triple ξ of H relative
to a root v ∈ V (T rG) is a triple (Hy

u , τ, w), where u ∈ V (H), y ∈ N (u) ∪ {u}, τ
is a spanning tree of Brv, and w ∈ V (τ).

Definition 4. An iso-triple ξ is a v-characteristic if and only if there exists a
subgraph isomorphism ϕ from Hy

u to (Grv|τ)
v
w with ϕ(u) = w.

In Lemma 5 below we first provide a characterization of subgraph isomor-
phisms from trees into outerplanar graphs in terms of v-characteristics. Its proof
follows directly from the definitions.

Lemma 5. Let H be a tree, G be an outerplanar graph, and r be an arbitrary
vertex of G. Then H 4 G if and only if there exists a v-characteristic (Hu

u , τ, w)
for some v ∈ T rG, u ∈ V (H), spanning tree τ of Brv, and w ∈ V (τ).

As an example, consider the star graph H with center u and neighbors
u1, u2, u3, u4, u5 and the graph Gr in Fig. 2. Obviously, there is a subgraph
isomorphism from H to G mapping u to w. For each leaf ui of H (ui = u1 in
Fig. 2), we would find a v-characteristic (Hui

u , τ, w), as we can injectively map
the four remaining neighbors of u to the children of w in τ and τ ′, i.e. to the
neighbors of w in G, except for v. When we compute the r-characteristics for v
later on, we will then find a characteristic (Hu′

u′ , τ ′′, v) for each leaf u′ of H and

5 Though the terminology below follows that of [8] (which, in turn, is based on the
concepts in [16]), the definitions of iso-triples and characteristics in this paper are
entirely different from those in [8].

1: function Main(H,G)
2: pick a vertex r ∈ V (G) and set C := ∅
3: for all roots v of T rG in a postorder do
4: let Srv be the set of spanning trees of Brv, each rooted at v
5: for all τ ∈ Srv do
6: for all w ∈ V (τ) in a postorder do
7: for all u ∈ V (H) do
8: if w ∈ V (τ) \ {v} or w = r then
9: C := C ∪ Characteristics(u, v, τ, w)
10: if (Hu

u , τ, w) ∈ C then return True
11: return False

12: function Characteristics(u, v, τ, w)
13: Cτ := ∅
14: for all θ ∈ Θvw(τ) do
15: let τ ′ be the tree satisfying θ = τ ∪ τ ′
16: let Cτ (resp. Cτ ′) be the children of w in τ (resp. τ ′) and Cθ := Cτ ∪ Cτ ′
17: let B = (Cθ∪̇N (u), E) be the bipartite graph with

cu′ ∈ E ⇐⇒
(c ∈ Cτ ∧ (Hu

u′ , τ, c) ∈ C) ∨ (c ∈ Cτ ′ ∧ (Hu
u′ , τ ′, c) ∈ C)

for all cu′ ∈ Cθ ×N (u)
18: if B has a matching that covers N (u) then return {(Hu

u , τ, w)}
19: else
20: for all u′ ∈ N (u) do
21: if B has a matching covering N (u) \ {u′} then
22: add

(
Hu′
u , τ, w

)
to Cτ

23: return Cτ

Algorithm 2: The Subtree Isomorphism Algorithm

unique spanning tree τ ′′ of Brr with the single edge vr. Note that it is crucial in
this example to combine the spanning trees of Brv with those of Brw or Brr , as we
would otherwise not be able to find a subgraph isomorphism from H to G.

Our algorithm, depicted in Algorithm 2, utilizes the condition stated in
Lemma 5 above. It selects an arbitrary vertex r ∈ V (G) (Line 2) and calculates
the characteristics for all root vertices by traversing T rG in a postorder manner
(Line 3). For any v ∈ V (T rG), the set of v-characteristics can be computed, as
we discuss below, from the sets of characteristics of the children of v in T rG, by
considering all spanning trees of Brv. Since G is a d-tenuous outerplanar graph
of bounded cycle degree, the number of spanning trees of Brv is bounded by a
polynomial of the size of G. Thus, for all v ∈ V (T rG) visited, Algorithm 2 first
computes the set Brv of v-rooted biconnected components and then calculates
the set Srv of all spanning trees of Brv (Line 4). Each spanning tree is regarded
as a tree rooted at v. The root v itself, if it is different from r, is ignored at
the stage when the algorithm visits it, as it will be processed when visiting its

τ

τ ′

Brv

Brw

Gr

v

w x
Hu1
u

H

u

u1

u2 u3 u4 u5

Fig. 2. This figure shows a small graph Gr with its subgraphs Brv and Brw (depicted by
the rounded triangles) and the star graph H. One spanning tree τ of Brv and τ ′ of Brw
are shown in red and blue, respectively.

parent vertex in T rG (Lines 6 and 8). Otherwise, i.e., when v = r, we need to
compute the r-characteristics at the end of the postorder traversal of τ , i.e.,
when r = v = w, as r has no parent root.

In Loop 3–10 we calculate in variable C the set of v-characteristics for all
combinations of v ∈ V (T rG), spanning tree τ of Brv, u ∈ V (H), and w ∈ V (τ).
By Lemma 5, there exists a subgraph isomorphism from H to G if and only if
there are v, τ , u, and w such that the iso-triple (Hu

u , τ, w) is a v-characteristic.
This condition is tested in Line 10. If such a v-characteristic exists the algorithm
terminates by returning the answer True. Thus, the algorithm reaches Line 11
and returns False only if there is no subgraph isomorphism from H to G.

We now turn to the problem of computing the characteristics for the nodes of
T rG. In Lemmas 6 and 7 below we formulate sufficient and necessary conditions
for iso-triples being characteristics. These conditions, as we show below, allow for
a recursive computation of the set of v-characteristics for any node v ∈ V (T rG)
from those of its children in T rG and with respect to the spanning trees of Brv,
justifying the post-order traversal of T rG (see Line 3 of Algorithm 2). To compute
the v-characteristics for a root vertex v with respect to a spanning tree τ of Brv,
our algorithm traverses τ in a post-order manner and checks whether there exists
a subgraph isomorphism from a certain subtree of H to Grv|τ , i.e., to the graph
obtained from Grv by replacing Brv with its spanning tree τ . Since V (τ) = V (Brv),
this operation is invariant to the set of vertices of Grv. The difficulty of this step
is, however, that Brv does not contain the complete neighborhood of w whenever
w ∈ V (τ) with w 6= r is a root vertex of another biconnected block in Gr

(see Figure 2 for such a case). Therefore, we need to take into account also the

spanning trees of Grw. The crucial observation is, however, that we do not have
to handle the potentially exponentially many spanning trees of Grw one by one.
As we state below, we can recover all information needed to calculate the set of
v-characteristics by combining τ with the set Srw of spanning trees of Brw only.
Since G is a d-tenuous graph of bounded cycle degree, the cardinalities of Srv and
Srw are polynomial in the size of G. Thus, we need to process only polynomially
many combinations of spanning trees from Srv and Srw, allowing for a polynomial
time algorithm deciding subgraph isomorphism.

We start the formal description of the above considerations by introducing
the following notation for the recovery of the subtrees we need from the spanning
trees containing w. Let v ∈ V (T rG). Then for any τ ∈ Srv and w ∈ V (τ) we define
Θvw(τ) by

Θvw(τ) :=

{τ ∪ τ
′ : τ ′ ∈ Srw} if w ∈ V (T rG) \ {v}

{τ} o/w (i.e., if w 6∈ V (T rG) or v = w),

where τ ∪τ ′ is the graph with vertex set V (τ)∪V (τ ′) and edge set E(τ)∪E(τ ′).
Thus, when w ∈ V (T rG) \ {v}, Θvw(τ) is the set of all trees obtained by “gluing”
τ and τ ′ at vertex w, for all spanning trees τ ′ of Brw, as V (τ)∩ V (τ ′) = {w}. As
an example, the combination of the blue and the red tree in Fig. 2 denotes an
element of Θvw(τ). Note that if w is a root vertex different from v then it always
has at least one child in Brw, that is, τ ′ is always a tree with at least one edge.
In this case, our algorithm needs to combine all pieces of information computed
for the children of w in τ , as well as for the children of w in all spanning trees
τ ′ of Brw. Otherwise, there are two cases: w is either not a root vertex or it is
equal to v. For the first case we have that w has no neighbor outside of Brv; for
the second case it holds that Brw = Brv.

Lemma 6 first considers the case of v-characteristics for subtrees Hy
u for some

y ∈ N (u), i.e., which can be obtained from Hu by removing the subtree rooted
at y (and thus, the edge uy as well).

Lemma 6. An iso-triple (Hy
u , τ, w) of H is a v-characteristic for some v ∈

V (T rG) and y ∈ N (u) if and only if there exists a θ ∈ Θvw(τ) and an injective
function ψ from N (u) \ {y} to the children of w in θ such that for all u′ ∈
N (u) \ {y} there is a subgraph isomorphism from Hu

u′ to (Grv|θ)
v
ψ(u′)

mapping u′

to ψ(u′).

A function ψ corresponding to the v-characteristic (Hu1
u , τ, w) in Lemma 6

is depicted by the dashed lines in Fig. 2. Lemma 7 formulates an analogous
characterization for the entire pattern H = Hu

u .

Lemma 7. An iso-triple (Hu
u , τ, w) of H is a v-characteristic for some v ∈

V (T rG) and y ∈ N (u) if and only if there exists a θ ∈ Θvw(τ) and an injective
function ψ from N (u) to the children of w in θ such that for all u′ ∈ N (u) there
is a subgraph isomorphism from Hu

u′ to (Grv|θ)
v
ψ(u′) mapping u′ to ψ(u′).

Lemmas 6 and 7 above are utilized by Subroutine Characteristics (see
Algorithm 2) in the computation of the set of v-characteristics for a vertex
v ∈ T rG with respect to a spanning tree τ of Brv and w ∈ V (τ). In particular,
for all θ ∈ Θvw(τ), we determine the tree τ ′ satisfying θ = τ ∪ τ ′ (Line 15)
and then compute the sets Cτ , Cτ ′ of children of w in τ and τ ′, respectively
(Line 16). To decide whether the conditions formulated in Lemmas 6 and 7
for the characterization of v-characteristics hold, we construct a bipartite graph
with vertex set Cτ ∪ Cτ ′∪̇N (u) and connect a vertex u′ ∈ N (u) with a vertex
c ∈ Cτ (resp. c ∈ Cτ ′) if and only if there is a subgraph isomorphism from the
subtree of Hu rooted at u′ to (Grv|θ)

v
c
. Note that at this stage, all such partial

subgraph isomorphisms have already been computed by the algorithm during
the postorder traversal of τ (resp. τ ′) and stored for all children of w in θ in Cτ
(resp. in Cτ ′). The algorithm then decides whether there exists a matching in
the bipartite graph constructed that covers all elements of N (u) (cf. Lemma 7)
or all elements of N (u) \ {u′}, for all u′ ∈ N (u) (cf. Lemma 6). The set of
v-characteristics with respect to w will then be determined by the outcome of
these tests.

3.3 Correctness and Runtime

The correctness of Algorithm 2 follows from Lemmas 6 and 7 by noting that for
a leaf u ∈ V (H) the algorithm finds a v-characteristic (Hy

u , τ, w) for the unique
neighbor y of u and for all τ ∈ Srv , w ∈ V (Brv)\{v}, and v ∈ V (T rG). Note that we
do not require G to be a d-tenuous outerplanar graph of bounded cycle degree
for the algorithm to work correctly. These properties are only used to obtain a
polynomial bound on the runtime.

We now claim that Algorithm 2 runs in polynomial time if G ∈ Od,c. Suppose
we call Main(H,G) in Alg. 2 for a tree H with |V (H)| = k and G ∈ Od,c with
|V (G)| = n for some k ≤ n. Let s be the maximum cardinality of Srv for any
v ∈ V (T rG). Then s ∈ O

(
nc(d+1)

)
. Indeed, as G is a d-tenuous outerplanar graph,

there are at most O
(
nd+1

)
spanning trees in any block of G. Furthermore, there

are at most c v-rooted blocks and an arbitrary number of v-rooted bridges. But
bridges have exactly one spanning tree, the bridge itself. The claim then follows
by noting that all spanning trees contain v. Since the spanning trees of a graph
can be generated with polynomial delay [17], the sets Srv can be computed in
polynomial time. Thus, Main calls subroutine Characteristics a polynomial
number of times.

Regarding the complexity of Characteristics, we have already seen that
there are at most s ∈ O

(
nc(d+1)

)
spanning trees τ ′ in Srw. The bipartite graph

B constructed in Line 17 has at most |N (w)|+ |N (u)| ∈ O (n) vertices for every
such τ ′. Its edges can be constructed by O

(
n2
)
membership queries to C. We

can implement the set C of characteristics found by the algorithm as a multidi-
mensional array of polynomial size such that each lookup and storage operation
can be performed in constant time. A maximum matching on B can be found
in O

(
n5/2

)
time [11]. Overall, we compute O (n) matchings for each spanning

tree τ ′ ∈ Srw in Lines 18 and 21. (Note, that we can check for the existence of a

d-Tenuous ∩
Outerplanar

Bounded Cycle
Degree ∩ d-TenuousCactus

Bounded Cycle
Degree Cactus

Bounded Degree
∩ d-Tenuous

Fig. 3. Results on frequent subtree mining in outerplanar graphs. Green denotes poly-
nomial delay and orange incremental polynomial time pattern mining. Thick borders
indicate that the result is new up to our knowledge. Arrows depict subset relations
between graph classes.

matching covering all but u′ by deleting u′ from B.) Thus, Characteristics
can be implemented to run in polynomial time and the overall runtime of Alg. 2
is bounded by a polynomial of the size of G.

4 Summary and Open Questions

The main contribution of this work is a polynomial delay algorithm generating
frequent subtrees of d-tenuous outerplanar graphs of bounded cycle degree. It
is based on a polynomial time subgraph isomorphism algorithm that may be
of some independent interest. An overview of the results on mining frequent
subtrees in different subclasses of outerplanar graphs is given in Fig. 3. Our
results (marked with thick border) extend previous results on frequent subtree
enumeration (as well as on subtree isomorphism [16]) in outerplanar graphs of
bounded vertex degree to a more general class of outerplanar graphs, as bounded
cycle degree is less restrictive than bounded vertex degree. Extending the picture
with further non-trivial classes is an important challenge for graph mining, not
only from theoretical, but also from application aspects.

The algorithm presented in this work is of theoretical interest. As future
work, we are going to turn it into a practical algorithm. Our empirical studies
on pharmacological molecules show that d and c are both very small numbers
for the graphs in this application field.

Another question for future work is whether the positive result of this paper
can be generalized to the case that the patterns are d-tenuous outerplanar graphs
of bounded cycle degree. In order to calculate the v-characteristics for a root
vertex v with respect to a vertex u in the pattern, our algorithm combines at
most two sets of spanning trees at any time and assumes that neither u nor the
vertices in its local environment are contained in a cycle. Therefore, in order to
apply the algorithm to the more general pattern language above, we need the
spanning trees of certain local environments of u. However, in contrast to the
transaction graphs, it may happen that such spanning trees are composed of

the combination of the spanning trees of the blocks for a non-constant number
of root vertices of the pattern graph. In such a case, an exponential number
of spanning trees must be processed. Therefore, if it is possible at all, such a
generalization would require a more sophisticated approach.

4.1 An Open Problem

It is natural to ask whether the positive result in Theorem 2 can be generalized
to arbitrary d-tenuous outerplanar graphs. That is, is it possible to generate
frequent subtrees in d-tenuous outerplanar graphs with polynomial delay if we
do not assume any constant upper bound on the cycle degree? We do not know
the answer and the question remains open even for the very simple class of
0-tenuous outerplanar graphs. Such diagonal-free outerplanar graphs are also
referred to as cactus graphs. In order to discuss the two possible answers to the
question above, we first state a lemma.

Lemma 8. Let P,G be graph classes satisfying Conditions 1–3 of Theorem 1,
but not Condition 4, i.e., subgraph isomorphism from P to G is NP-complete. If
the FCSM problem for P and G cannot be solved with polynomial delay then P
6= NP.

Proof. Assume that frequent patterns from P can not be generated with polyno-
mial delay in transaction databases from G. If the subgraph isomorphism problem
for P and G is not in P, we are done, as subgraph isomorphism is in NP.

Suppose for contradiction that there exists an algorithm A that decides in
polynomial time for all P ∈ P and G ∈ G whether P is subgraph isomorphic
to G. But then, by using Algorithm 1 with A as embedding operator, we get a
polynomial delay mining algorithm, contradicting our assumption that such an
algorithm does not exist. Thus, there is no polynomial time algorithm deciding
whether P is subgraph isomorphic to G and hence P 6= NP. ut

We are now ready to discuss the open problem formulated above:

(i) Suppose the problem can be solved with polynomial delay. Then this would
imply that polynomial delay frequent pattern enumeration is possible for
NP-complete pattern matching operators, thus solving an open problem.

(ii) Suppose the problem can not be solved with polynomial delay. Then, by
Lemma 8 above, a proof of this negative result would immediately imply
that P 6= NP. Somewhat surprisingly, deciding subgraph isomorphism from
a tree into a cactus graph is an NP-complete problem [2]. Thus Lemma 8
applies to tree patterns and cactus transaction graphs. Therefore, it is likely
very difficult to prove for this case that tree patterns can not be mined with
polynomial delay.

Thus, both the positive or the negative answer would be a very interesting result.
We conjecture that (ii) holds, that is, polynomial delay pattern generation is
impossible for computationally intractable pattern matching operators; this is
true for graph classes in which the Hamiltonian path problem is NP-complete.
If our conjecture holds, then it implies that

(a) in case of intractable pattern matching operators, the primary question
should be whether the pattern mining problem at hand can be solved in
incremental polynomial time, and not to show that polynomial delay pat-
tern mining is not possible and

(b) even for very simple graph classes, the cycle degree of the transaction graphs
is a crucial parameter for polynomial delay frequent pattern generation.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery
of association rules. In Advances in Knowledge Discovery and Data Mining, pages
307–328. AAAI/MIT Press, 1996.

2. T. Akutsu. A polynomial time algorithm for finding a largest common subgraph of
almost trees of bounded degree. IEICE transactions on fundamentals of electronics,
communications and computer sciences, 76(9):1488–1493, 1993.

3. Y. Chi, Y. Yang, and R. R. Muntz. Indexing and mining free trees. In ICDM,
pages 509–512. IEEE Computer Society, 2003.

4. L. De Raedt. Logical and relational learning. Cognitive Technolog. Springer, 2008.
5. R. Diestel. Graph Theory, volume 173. Springer, 2012.
6. G. C. Garriga, R. Khardon, and L. D. Raedt. Mining closed patterns in relational,

graph and network data. Ann. Math. Artif. Intell., 69(4):315–342, 2013.
7. G. Gottlob. Subsumption and implication. Inf. Process. Lett., 24(2):109–111, 1987.
8. M. Hajiaghayi and N. Nishimura. Subgraph isomorphism, log-bounded fragmenta-

tion, and graphs of (locally) bounded treewidth. J. Comput. Syst. Sci., 73(5):755–
768, 2007.

9. J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Min. Knowl. Discov., 8(1):53–
87, 2004.

10. F. Harary. Graph Theory. Addison-Wesley series in mathematics. Perseus Books,
1994.

11. J. E. Hopcroft and R. M. Karp. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

12. T. Horváth and J. Ramon. Efficient frequent connected subgraph mining in graphs
of bounded tree-width. Theor. Comput. Sci., 411(31-33):2784–2797, 2010.

13. T. Horváth, J. Ramon, and S. Wrobel. Frequent subgraph mining in outerplanar
graphs. Data Min. Knowl. Discov., 21(3):472–508, 2010.

14. T. Horváth and G. Turán. Learning logic programs with structured background
knowledge. Artif. Intell., 128(1-2):31–97, 2001.

15. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maxi-
mal independent sets. Information Processing Letters, 27(3):119–123, 1988.

16. J. Matoušek and R. Thomas. On the complexity of finding iso-and other morphisms
for partial k-trees. Discrete Mathematics, 108(1):343–364, 1992.

17. R. C. Read and R. Tarjan. Bound on backtrack algorithms for listing cycles, paths,
and spanning trees. Networks, 5:237–252, 1975.

18. R. Shamir and D. Tsur. Faster subtree isomorphism. In Theory of Computing and
Systems, 1997, pages 126–131. IEEE, 1997.

