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Abstract—Decision trees excel at interpretability of their
prediction results. To achieve required prediction accuracies,
however, often large ensembles of decision trees – random forests
– are considered, reducing interpretability due to large size. Ad-
ditionally, their size slows down inference on modern hardware
and restricts their applicability in low-memory embedded devices.
We introduce Decision Snippet Features, which are obtained
from small subtrees that appear frequently in trained random
forests. We subsequently show that linear models on top of these
features achieve comparable and sometimes even better predictive
performance than the original random forest, while reducing the
model size by up to two orders of magnitude.

I. INTRODUCTION

Decision trees (DT) and random forests (RF) are among
the most used machine learning models. They have many nice
properties such as interpretability [14, 15] and rather small
model size, at least compared to recent deep learning models.
In particular, decision trees excel in interpretability, if they are
not too large. This is due to the fact that the prediction for
a given data point depends on a sequence of simple tests on
data features. However, a single decision tree sometimes has
too low predictive performance due to overfitting and pruning
issues. Hence ensembles, i.e., random forests are very common
in practice.

Random forests reduce the variance in predictions of a
single decision tree, while typically only marginally increas-
ing the bias [3]. However, the typically large size of those
ensembles reduces the interpretability. Another drawback of
the large size of random forest models is that inference on
small embedded devices becomes more difficult. Here, energy
consumption of the inference step, as well as tight constraints
on instruction memory require small model sizes [5]. Further-
more, on modern general purpose processors, repeated highly
unpredictable branching as is common in the inference step
of random forest models is slow due to often failing branch
prediction. As a result there has been a recently increased
interest in implementing DT and RF models in dedicated
hardware, such as field programmable gate arrays (FPGA) [5]
or for fast hardware-specific implementations [6].

Hence, models of small size are beneficial for implementa-
tion, as well as interpretability, while ensemble methods are
often required to achieve the predictive performance that is
needed. In this work, we propose to learn from trained models,
(i) to increase interpretability and gain more insights in the
underlying learning problem and (ii) to subsequently reduce
the size of the resulting models for implementation on small
embedded devices.

We propose to find rooted subtrees that appear frequently
in a trained ensemble model. Due to the training process
of random forests that use bootstrap aggregating (bagging),
each tree in the forest model sees different data. Our working
assumption is that certain combinations of splits that appear
together in multiple trees are induced by the underlying
learning problem. If this is true, such subtrees which we call
decision snippets can be of independent interest for exploration
of the problem domain. Furthermore, these decision snippets
can be used in practice to build novel, smaller ensemble
methods for the same learning problem.

To this end, we observe that a decision tree T is can be seen
as learning a representation for the initial problem domain X
that corresponds to the leaves of T [1]. Next follows a linear
model (classification), piecewise linear model (regression),
or nonlinear model (e.g., density estimation [8]) that maps
leaves to the target domain. Thus, it is in principle possible to
decouple the training process to find a suitable decision tree
or random forest topology (i.e, a tree of split nodes and leafs)
from the training process to find a suitable classification or
regression model.

The view of decision tree or random forest learning as
combination of representation and model learning allows to
apply decision snippets as feature maps to obtain decision
snippet features and to subsequently learn a suitable model
on top of the novel feature representation. In this sense, each
decision snippet corresponds to a multi-nominal feature in a
novel feature space. In a second step, we then train linear
classifiers in our novel feature space and show that they
achieve similar predictive performance to the complete random
forest model, while using only a small portion of the space
or the original models. While in principle any model could
be used on top of the decision snippet features, our goal of
small and interpretable models can be well achieved with
Naı̈ve Bayes, linear Support Vector Machines, and Logistic
Regression.

Our empirical evaluation shows that our decision snippet
features allow similar or even better prediction accuracies on
standard benchmark datasets while reducing the model size
as well as inference time, compared to the original random
forests that they were obtained from.

The remainder of this paper is organized as follows: In
Section II, we introduce the necessary notions and notation.
Section III motivates our usage of linear models on top of
decision snippet features by showing that random forests, in
fact are nothing else. Next, we introduce decision snippet
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Fig. 1: A decision tree T with three split vertices (split
conditions are depicted by colors) and four leaf vertices (de-
picted in gray). The inference step for T with majority classes
(1,−1,−1, 1) in its leaves for some input vector x ∈ Rd can
be seen as a feature mapping step fT (x) followed by a linear
function yT (fT (x)), resulting in the class prediction −1 in
this example.

features with some technical detail in Section IV and show
empirical results in Section V. Related work is discussed in
Section VI before Section VII concludes.

II. NOTIONS AND NOTATION

We consider a learning problem with a hidden function y :
X ⊆ Rd → Y ⊆ R where we are given a set Xtrain ⊆ X and
ytrain ∈ YXtrain : yi = y(xi) and our goal is to come up with
a prediction function ŷ : X → R such that ŷ(x) is close to
y(x) for all x ∈ X . Many learning tasks can be modeled in
this way, by defining a suitable feature representation for the
objects of interest and by defining a sensible loss function to
measure the closeness of ŷ to y. A well known way to come
up with a function ŷ are decision trees and random forests,
which we will now introduce.

A rooted tree is a tree T = (V (T ), E(T )) in which one
vertex r(T ) ∈ V (T ) has been designated the root. We consider
rooted trees as directed graphs where each edge is directed
away from the root vertex and denote an edge from v to w
as (v, w). Hence each vertex v ∈ V (T ) has a unique depth
d(v) which is its distance from the root r(T ). A binary rooted
tree is a rooted tree such that every vertex has either zero or
two outgoing edges. The set of leaves of T is the set of all
vertices in T with no outgoing edges. A labeled rooted tree
over some set Σ, called label set, is a rooted tree T together
with a label function lT : V (T ) ∪ E(T ) → Σ. A labeled
rooted tree T1 is subgraph isomorphic to a labeled rooted tree
T2 if there exists an injective mapping ϕ : V (T1) → V (T2),
called subgraph isomorphism such that lT1

(v) = lT2
(ϕ(v))

and lT1
((v, w)) = lT2

((ϕ(v), φ(w)) for all v, w ∈ V (T1) and
d(ϕ(r(T1))) ≤ d(ϕ(v)) for all v ∈ V (T1). That is, if we draw
rooted trees with root on top, the image of the root of T1 in T2
will be on top of the image of T2. We will omit the subscripts
from the notation if clear from the context.

With these definitions, we consider a random forest model
F for a numerical domain set X ⊆ Rd and a response
variable set Y to be a multi set of rooted labeled binary trees.
Here, each label on a vertex corresponds to a split condition

xi ≤ v for some i ≤ d and v ∈ R. Each label on an edge
corresponds to either “the split condition evaluates to true” or
“the split condition evaluates to false”. Note that we can model
categorical domain sets as subsets of Rd, as well by using one-
hot encodings. In this paper, we will always assume that we
are given a decision tree or random forest model F that was
learned on some training data set Xtrain ⊂ Rd and will denote
the corresponding prediction function by ŷF .

III. RANDOM FORESTS ARE LINEAR MODELS

Recently there has been a tremendous amount of research
in the area of representation learning. Most of the work em-
ploys (deep) neural networks to simultaneously learn “useful”
representations (i.e., features) and a corresponding prediction
function f̂ for a given learning problem [1, 11]. In this sense,
the hidden neurons of a neural network can be interpreted as
features (or sets of features, if tensors are propagated through
the neural network) and the output neurons are interpreted as
the target features. The training procedures (typically some
form of gradient descent) simultaneously builds features (hid-
den neurons) and target values (output neurons) that solve the
task at hand. A typical problem of these approaches, however,
is that the topology of the neural network has to be predefined.
Decision trees and Random Forests, on the other hand, allow to
build a topology for a given learning problem and, as we will
discuss now, are indeed also learning a feature representation
and corresponding prediction function.

For ease of exposition, let us consider the case of binary
classification, where the response variable takes values in Y =
{−1, 1}. Suppose we have learned a decision tree T on some
training dataset Xtrain ⊆ Rd. Classification is then typically
done using the majority class or the relative frequency of
the positive class of the training examples that were mapped
to a leaf l in the training process. That is, conceptually, the
inference step first maps an example x to a leaf of T and then
returns the value associated with that leaf. Hence we can write
the classification function ŷT : Rd → {−1, 1} that corresponds
to T as

ŷT = cT ◦ fT

with
• fT : Rd → leaves(T ) which maps an example x ∈ Rd

to the leaf l ∈ leaves(T ) that the inference step of the
decision tree classifier computes.

• cT : leaves(T ) → {−1, 1} maps a leaf l to the majority
class of training examples assigned to l.

See Fig. 1 for an example of a decision tree with three internal
split vertices and four leaf vertices that predicts ŷT (x) = −1.

Now, yT is in fact a linear function in the following sense:
We can represent leaves(T ) as a one-hot encoded feature
space, i.e., fT : Rd → {0, 1}leaves(T ) with fT (x) = el(x)
where el is the unit vector that is equal to one at index l and
equal to zero otherwise and l(x) is the leaf of T which x is
assigned to. That is, each x ∈ Rd is mapped to a unit vector
in Rleaves(T ). Now we can multiply this unit vector el(x) with
a weight vector pT ∈ Rleaves(T ) that contains, for every leaf,



its majority class. Hence the class of an input example x ∈ Rd

can be obtained by computing the scalar product 〈fT (x), pT 〉,
which is a linear function for fixed pT .1

If instead of a single decision tree we consider an ensemble
of decision trees F = {T1, . . . , Tk}, we can concatenate the
feature maps fTi

to a feature map

fF : Rd → {0, 1}leaves(T1)×...×leaves(Tk) (1)
x 7→ fT1

(x) . . . fTk
(x) (2)

for the ensemble F .
Two approaches for inference on a random forest are

most common: (1) Averaging and (2) majority voting. Both
variants can directly be achieved by a linear classifier
on the feature values fF . For averaging, we set pF ∈
Rleaves(T1)×...×leaves(Tk) to store the probabilities of the posi-
tive class for each leaf, and using a threshold value of 0.5 for
the linear classifier. Majority voting can be achieved by setting
pF to store the majority class for each leaf and choosing 0 as
threshold value for the linear classifier.

Furthermore, a decision tree T that stores the positive class
probability in pT solves the same task that a Naı̈ve Bayes
classifier solves. That is, 〈pT , fT (x)〉 = P (ŷ(x) = 1|x) =
pl(x) and the linear classifier mentioned above returns
arg maxc∈{−1,1} P (c|fT (x)). The classification step of a ran-
dom forest, however, is different to Naı̈ve Bayes.

These connections motivate us to apply linear classifiers
on top of our decision snippet features. In particular, we will
investigate linear support vector machines, logistic regression,
and Naı̈ve Bayes models on top of the features fF . While the
training process obviously differs from that of a random forest
(which learns the weights pF together with the topology), the
resulting models are similarly easy to interpret, as well as
implement and require the same amount of parameters.

IV. DECISION SNIPPET FEATURES

Recall that we are interested in small models due to their
inherent interpretability, fast inference, and applicability on
small embedded devices. If random forest inference is a linear
model on a non-linear feature space then we can in principle
separate the feature selection step from the classifier training
process. With this newly gained freedom we shall investigate
how to construct a novel feature mapping which we call
decision snippet features from a trained random forest. To this
end, we start with a look at the split conditions.

A split condition that appears frequently in a trained random
forest has been selected by the training process of a decision
tree algorithm on multiple subsets of the data because it has
maximized some relevant gain function (or minimized some
impurity measure). Note that this is true not only because each
decision tree in a random forest is trained on a different subset
of the original training data. It is also due to the fact that a
split vertex that is not the root of its decision tree only sees a

1The same method works for class probabilities stored in the leaves. It is
also easy to see how to generalize this to non-binary classification or simple
variants of regression trees.

A. Random Forest F

B. Decision Snippet Prototypes

C. Decision Snippets

D. Decision Snippet Features
x
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Fig. 2: A. A random forest F consisting of two decision trees
(split conditions are depicted by colors), B. all 2-frequent
subtrees of the random forest (without leaves) selected as
decision snippet prototypes, C. the resulting decision snippets,
and D. the resulting decision snippet features. Gray vertices are
leaves, all other colors represent unique branching conditions,
such as f2 ≤ 42. The decision snippet features which result
from the decision snippets map an input example x to one leaf
in each decision snippet, resulting in a 15-dimensional binary
decision snippet feature vector. This vector always has exactly
as many ones as there are decision snippets.

subset of this random subset of the original training data. This
extends beyond single split conditions: A rooted labeled tree
that appears more than once in a random forest tells us that
a sequence of tests maximally increases the gain function on
multiple subsets of the training data. We will ignore the leaves
of the decision tree for now, and will motivate this soon.

We call such subtrees of a random forest decision snippet
prototypes and are interested in finding them. Before we go
into the technical details of this, however, we will explain
how to use decision snippets to achieve our goal of small, fast,
interpretable models. A decision snippet prototype S is almost
a decision tree. However, S might contain split vertices as
leaves. Consider, for example, the yellow vertex in the random
forest on top of Fig. 2. This vertex appears once directly above
two leaf vertices and once in a higher level of the decision tree
on the top right. So we should select the yellow split condition
as a decision snippet prototype. To obtain a proper decision
tree from it, however, we need to add two leaves and connect
them via edges that correspond to the two possible outcomes



of the yellow split condition test. The resulting decision tree
S′ can now be used to compute a leaf (of S′) for any data
point x ∈ Rd. Hence we can apply this methodology for any
set P = {S1, . . . , Sl} of decision snippet prototypes to obtain
a set P ′ = {S′1, . . . , S′l} of decision snippets and define the
feature map fP ′ as in Eqn. 1. We call the resulting features
decision snippet features. Figure 2 shows the whole process
for a random forest F consisting of two decision trees.

As a result, we have now effectively constructed a new
random forest that can be used for mapping an input vector
x ∈ Rd to a one-hot encoded feature vector, the decision
snippet features. What now remains is to learn the function
yP ′ to map from the decision snippet feature space to the
target domain: We cannot just take the pF values from the
original random forest. First, we might have constructed new
leaf nodes for some decision snippet prototypes. Second, even
if we had selected a leaf node as part of a decision snippet
prototype, we could not use its corresponding majority class
(or its probability). The reason is that the decision snippet will
see all input data during inference, while the corresponding
subtrees in the random forest F would only see a subset of the
data, depending on the split conditions on the parent vertices.
Hence we have to learn a new function.

In principle, any learning method could be used. However,
we will stick to simple linear models, as these can be imple-
mented on restricted hardware and maintain the interpretability
and small size of the resulting models.

A. Technical Details and Computational Complexity of Mining
Decision Snippet Features

To obtain decision snippet features, we propose to select a
set P of (small) rooted subtrees that appear frequently in a
trained random forest F . That is, given F and a frequency
threshold t ∈ N we enumerate all rooted labeled trees that are
subgraph isomorphic to at least t (decision) trees in F . t is a
parameter that can be chosen by the user or found by some
parameter optimization method. See Fig. 2 for an example
random forest F and the 2-frequent subtrees of F (ignoring
the leaves; more on this later).

All frequent subtrees in the above sense can be found in
polynomial time in the size of the random forest F and
the number of such frequent subtrees using some off-the-
shelf frequent subtree mining algorithms [7]. These algorithms
typically proceed by finding all frequent labeled vertices first
(i.e., the split conditions that appear frequently) and then
extending them one by one with an additional (frequent) split
condition that is connected either by a “true” edge, or a “false”
edge. Subsequently, the support of such a candidate pattern is
evaluated on the random forest. For a recent overview on such
algorithms see Welke [16]. We note that the special case of
binary random forests allows for faster subtree isomorphism
checks, as they are in fact ordered rooted trees with bounded
out-degree. But we omit the discussion of these details as
the typical size of the random forests does not require a
very careful algorithmic approach: Even very large random

Dataset # Instances # Attributes # Classes
adult 48842 14 2
bank 45211 17 2
magic 19020 11 2
spambase 4601 57 2
statlog 6435 36 7
mnist 60000 64 10
sensorless 58509 49 11
letter 20000 16 26

TABLE I: Datasets. We report number of instances, number
of attributes, and number of classes.

forests are small when considered as frequent subtree mining
instances.

As we have mentioned above, after obtaining a set of
frequent subtrees P of a random forest F as decision snippet
prototypes, we next need to add missing leaves. This step,
however, might result in duplicates in the resulting set of
decision snippets: Consider a decision snippet prototype Si

that contains (by chance) some leaf vertex v. As P is the set
of frequent subtrees, it follows that P also contains the tree
Sj that is obtained from Si by removing the leaf v. This is
due to the downward closure property of P : If some tree S
is frequent in F , all of its subtrees must be frequent in F ,
as well. But adding all missing leaves to Si and to Sj would
result in two isomorphic trees, resulting in redundant decision
snippet features and a larger model size. To avoid this issue, we
remove the leaves from the random forest F before mining the
frequent subtrees. It can be shown that this exactly removes all
duplicate decision snippets, without losing any non-duplicate.

V. EXPERIMENTS

We show experiments on eight benchmark classification
datasets from the UCI repository [9] (adult, spambase, magic,
satlog, mnist, letter, bank, and sensorless) containing both
categorical and numerical features. We train four random
forest classifiers on each dataset for a maximum depth d ∈
{5, 10, 15, 20}, consisting of 25 trees each. We use the stan-
dard train/test split of the datasets and use a standard imple-
mentation of random forests [13] with default parameters. See
Table I for information on the datasets.

To obtain frequent subtrees in these random forests, we
use a rooted version of the frequent subtree mining software
described in Welke [16]. To this end, we convert each random
forest into a rooted labeled tree database where edges are
either labeled “true” or “false” and vertices have a label of
the form “fi ≤ v” for some string representation of feature
fi and fixed precision representation of v. As discussed in
Section IV-A, we remove all leaf vertices from the random
forests to speed up the mining and avoid duplicate decision
snippets. We compute the set of frequent subtrees in these
datasets for each frequency threshold t ∈ [2, 25], which make
up the decision snippet candidates. To restrict the runtime and
space requirements of the resulting decision snippet features,
we restrict the mining step to patterns of up to at most six
vertices. To allow subsequent experimentation with scikit-learn
tools, we provide a compatible class in Python that takes



the decision snippet candidates, adds leaves where they are
missing and can compute the decision snippet features for
some given set of examples from the input domain X ⊆ Rd.
Our code and experiments are available online.2

We train Naı̈ve Bayes (NB), logistic regression (LR) and
linear support vector machine (SVM) models on the deci-
sion snippet features and compare their performance to the
perfomance of the random forest on the original feature
representation. For training the models on the decision snippet
features, we reuse the training split of the dataset. Among
the 4 · 24 sets of decision snippet feature candidates for each
dataset, we select te best candidate as decision snippet features.
Selection of the best decision snippet features is based on the
accuracy on the training split. We report the accuracy on the
test set on all subsequent tables and figures.

A. Size, Inference Complexity, and Predictive Performance

To investigate whether decision snippet features are indeed
suitable for reducing the model size (e.g., for inference on
embedded devices) we compute the size of the original random
forests and the decision snippet features. We report the number
of nodes (i.e., split conditions and leaves) of the decision
snippets and random forests. To complement these numbers,
we also compute the inference complexity of both models,
that is, the average number of comparisons (if conditions)
required for a test example to pass from the root of the tree
until reaching the prediction in one of the leaf nodes.

Table IV shows a comparison between the complete Ran-
dom Forest (consisting of 25 trees each) and the decision
snippet features according to accuracy, size and inference
complexity for each depth d ∈ {5, 10, 15, 20}. Table II)
summarizes Table IV, showing only the best random for-
est and the best decision snippet features among all depths
d ∈ {5, 10, 15, 20}. Starting with Tab. II, it can be seen that
the best performing learners on decision snippet features are
typically within 0.02 of the accuracy of the best random forest.
Exceptions are only mnist, where decision snippets don’t seem
to work well, and bank, where the random forests do not
perform better than random guessing, but nonetheless the best
decision snippet based classifier achieves an accuracy of 0.905.
On the other hand, when looking at the size of the models,
we see that the decision snippet features are between two and
three orders of magnitude smaller (in number of nodes) than
the best performing random forests. The average inference
time of decision snippet features, (as measured by the average
number of if-conditions to be evaluated for inference) is on
average 0.65 that of the best performing random forest. We
must acknowledge, however, that there are cases, where the
average inference time increases a little, due to a large number
of small decision snippets.

Looking at the detailed results in Table IV, we see that
on the decision snippet features, Naı̈ve Bayes is typically
outperformed by either logistic regression or linear SVM.
Furthermore, it can be seen that for all depths, the decision

2https://github.com/pwelke/DecisionSnippetFeatures

Dataset Random Forest Decision Snippet Features
Acc. Size Avg.I θ Acc. Size Avg.I

adult 0.863 99263 406.7 2 0.843 176 153.8
spambase 0.93 10183 249.5 3 0.922 582 199
magic 0.856 69961 409.9 2 0.845 1192 266.6
satlog 0.861 17473 298.3 2 0.871 141 138.4
mnist 0.966 237187 398.1 4 0.872 305 199
letter 0.961 92323 340.2 2 0.932 23220 380.9
bank 0.501 1479 125 2 0.905 144 134
sensorless 0.11 8889 250 2 0.102 60 59

TABLE II: Summary of Table IV. Best (according to test
accuracy) Random Forest of any maximum depth d ∈
{5, 10, 15, 20} and best Decision Snippet Features with their
sizes and average inference complexities (Avg.I) on test set.
θ reports the frequency threshold used for the best decision
snippets.

snippets reduce the model size, with respect to the random
forest from which they were mined. This is not necessarily the
case, as there might be an exponential number of frequent pat-
terns for unconstrained tree databases. However, the frequency
thresholds for which the (small) best performing models are
found tends to be rather low (between two and five) with a
few exceptions.

B. Is Frequency a Good Selector of Decision Snippet Fea-
tures?

We now empirically validate our assumption that frequent
subtrees of trained random forests are indeed good predictors.
To this end, we compare the performance of (frequency
based) decision snippet features to the performance of subtrees
sampled randomly from the random forest. For a given dataset
D and random forest depth d ∈ 5, 10, 15, 20 we compute the
set of all 1-frequent subtrees (i.e. all trees that occur anywhere
in the database regardless of the their frequency) up to six
vertices. Then we sample the same number of patterns from
the resulting set of subtrees as in the best performing frequency
based decision snippet candidate of the same maximum depth
d. We build the decision snippet features from this new set of
trees and proceed with the training as for the frequency based
decision snippet features. We repeat the sampling procedure
ten times and report average and standard deviation over the
random samples.

Table III compares results of this experiment. We first note
that the above sampling process draws uniformly from the
set of all subtrees of size up to six (excluding leaves), while
the frequency based selection chooses only frequent subtrees.
Due to the downward closure of the pattern set the latter
favors smaller patterns. Hence we notice that the sampling
based decision snippet features have on average 4.5 times more
vertices than the frequency based decision snippet features.
Furthermore, the size of the sampling based decision snippet
features does not deviate much among the different samples.

When comparing the prediction accuracies of frequency
based and sampling based decision snippet features, we see
that random sampling tends to perform better on magic, satlog,
mnist, and letter, while the opposite is true on the remaining

https://github.com/pwelke/DecisionSnippetFeatures


Dataset Frequency Based Sampling Based
θ Acc. Size Acc. Size

Logistic Regression
adult 2 0.83 176 0.825± 0.004 644± 14.3
spambase 2 0.794 81 0.624± 0.071 355.5± 12.3
magic 2 0.825 172 0.843± 0.002 750.9± 27.1
satlog 2 0.868 141 0.876± 0.003 646.8± 19.7
mnist 2 0.712 86 0.917± 0.003 408.7± 13.6
letter 3 0.85 95 0.866± 0.009 416.5± 12.2
bank 2 0.905 144 0.908± 0.001 611.4± 21.7
sensorless 2 0.091 11 0.093± 0.001 51.1± 5.5

Naı̈ve Bayes
adult 2 0.843 176 0.728± 0.019 644± 14.3
spambase 2 0.904 81 0.899± 0.024 355.5± 12.3
magic 5 0.778 24 0.789± 0.009 116.2± 5.1
satlog 2 0.764 141 0.759± 0.056 646.8± 19.7
mnist 2 0.712 86 0.786± 0.009 408.7± 13.6
letter 5 0.5 54 0.529± 0.015 265± 7.5
bank 14 0.896 4 0.745± 0.1 19.9± 2.7
sensorless 2 0.091 11 0.093± 0.002 51.1± 5.5

SVM
adult 2 0.824 176 0.826± 0.004 644± 14.3
spambase 4 0.791 8 0.692± 0.053 37.4± 4.9
magic 2 0.824 172 0.842± 0.002 750.9± 27.1
satlog 2 0.871 141 0.87± 0.004 646.8± 19.7
mnist 2 0.855 86 0.916± 0.003 408.7± 13.6
letter 3 0.847 95 0.873± 0.01 416.5± 12.2
bank 3 0.904 75 0.907± 0.001 356± 10.2
sensorless 8 0.098 1 0.102± 0.002 4.6± 1.4

TABLE III: Comparison of frequency based decision snippet
features (left) and randomly sampled decision snippet features
(right). We report mean and std. dev. of ten random samples.

four datasets. Reconsidering the size of the models, however,
we see that (except for mnist) frequency based decision snippet
features perform at most slightly worse than randomly sampled
decision snippet features, using only 23% of the required
space.

C. Using Decision Snippet Features as Random Forests

In the previous steps, we have applied linear models on
top of decision snippet features. Decision snippets, however,
can also be used as random forests. To this end, recall from
Section III that the random forest classifier computes the
majority class of the training labels for each leaf vertex and
then (in its basic versions) either does a majority voting or
an averaging over the decision trees in the random forest.
Hence, we compute training set class probabilities for each
leaf of any decision snippet and then set the leaf label to the
majority class (majority voting) or the class with the higher
sum of probabilities in the respective leaf vertices (averaging)
at inference time.

Figure 3 shows the results of this exeriment. We deliberately
compare the results of the Naı̈ve Bayes classifier on the
decision snippet features, as it performed the worst among
the three classifiers considered in Sect. V-A. However, the
Naı̈ve Bayes classifier outperforms the majority voting and
averaging classifiers on six out of the eight datasets under
consideration and achives similar results on the remaining two
datasets. Hence, we conclude that decision snippets are not
well suited to directly work as random forests. This is not
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Fig. 3: The plot shows the performance comparison between
DSF Naive Bayes and the DSF as Random Forest (using two
variants: majority voting and average probability)

surprising as the bagging in combination with pruning might
have otherwise resulted in a random forest of similar size and
topology.

VI. RELATED WORK

A. Model Trees

Model trees [10] use linear regression functions associated
with each leaf of a decision tree to learn a piecewise linear
function. They can be used for classification, as well. Note,
however, that our approach is conceptually simpler, as our
approach builds a single linear function from the leaf space to
the target domain.

B. Representation Learning

The fact that decision trees are implicitly learning a one-hot
encoded representation of contiguous regions in input space
has been observed before [1]. In this context, Bengio and
Delalleau [2] observed that the expressive power of ensemble
models, that is random forests, is much higher than that of
a single decision tree. This is due to a possibly exponential
blow-up of the intersections of regions of different decision
trees in the random forest model. While the thought of mining
relevant substructures in trained random forests is (up to our
knowledge) novel, this motivates our search for reasonable
representations in the trained random forest and the subsequent
application of a suitable model.

C. Pruning

There has been a tremendous amount of work dedicated
to the pruning of decision trees. Even the initial works of
Breiman et al. [4] and Quinlan [14] mention the necessity



Dataset Random Forest DSF Naive Bayes DSF Logistic Regression DSF SVM
Acc. Size Avg.I θ Acc. Size Avg.I θ Acc. Size Avg.I θ Acc. Size Avg.I

Max depth = 5
adult 0.844 1431 124.1 2 0.843 176 153.8 2 0.830 176 153.8 2 0.824 176 153.8
spambase 0.915 1205 124.2 2 0.904 81 78.3 2 0.794 81 78.3 4 0.791 8 7
magic 0.820 1471 125 5 0.778 24 23 2 0.825 172 163.3 2 0.824 172 163.3
satlog 0.841 1469 122.7 2 0.764 141 138.4 2 0.868 141 138.4 2 0.871 141 138.4
mnist 0.856 1575 125 2 0.712 86 85 2 0.855 86 85 2 0.854 86 85
letter 0.659 1439 124.7 5 0.497 54 53 3 0.850 95 87.7 3 0.847 95 87.7
bank 0.501 1479 125 14 0.896 4 3 2 0.905 144 134 3 0.904 75 74
sensorless 0.109 1173 125 2 0.091 11 10 2 0.097 11 10 8 0.098 1 0

Max depth = 10
adult 0.859 14705 244 7 0.834 145 143.3 8 0.826 130 129 9 0.825 125 124
spambase 0.926 5929 187.8 4 0.916 83 82 9 0.777 3 2 9 0.777 3 2
magic 0.845 13573 200 2 0.804 1192 266.6 2 0.845 1192 266.6 2 0.844 1192 266.6
satlog 0.857 10345 224.2 4 0.753 501 199 2 0.860 1223 204.7 2 0.858 1223 204.7
mnist 0.944 41993 249.2 3 0.785 841 199 4 0.872 305 199 4 0.869 305 199
letter 0.865 17923 234.5 4 0.580 345 243.4 4 0.875 345 243.4 4 0.875 345 243.4
bank 0.458 18105 248.1 25 0.865 30 29 5 0.904 303 225.6 5 0.904 303 225.6
sensorless 0.110 8889 250 2 0.097 60 59 2 0.102 60 59 2 0.101 60 59

Max depth = 15
adult 0.862 50719 337.7 3 0.803 3433 327.9 19 0.824 128 127 19 0.825 128 127
spambase 0.93 10183 249.5 6 0.919 60 59 13 0.777 3 2 13 0.777 3 2
magic 0.852 41633 344.5 2 0.793 2519 305.2 3 0.843 1150 232.9 3 0.843 1150 232.9
satlog 0.858 16371 257.8 9 0.721 129 128 2 0.860 1545 217 2 0.857 1545 217
mnist 0.962 186807 346.7 3 0.766 8388 200 2 0.868 20554 200 2 0.865 20554 200
letter 0.948 56379 309.1 7 0.581 335 240.5 2 0.913 13773 368.9 2 0.919 13773 368.9
bank 0.424 73195 348.3 4 0.769 4212 322.6 4 0.904 4212 322.6 4 0.903 4212 322.6
sensorless 0.109 27369 348.7 2 0.098 283 199 2 0.101 283 199 2 0.101 283 199

Max depth = 20
adult 0.863 99263 406.7 13 0.774 346 248 22 0.826 151 149.9 17 0.827 210 203.2
spambase 0.93 12589 285.3 3 0.922 582 199 2 0.821 1351 202.1 2 0.817 1351 202.1
magic 0.856 69961 409.9 2 0.785 4987 307.5 2 0.836 4987 307.5 2 0.835 4987 307.5
satlog 0.861 17473 298.3 10 0.716 110 109 10 0.860 110 109 9 0.857 169 168
mnist 0.966 237187 398.1 3 0.721 11864 200 5 0.854 3049 200 5 0.853 3049 200
letter 0.961 92323 340.2 2 0.619 23220 380.9 2 0.92 23220 380.9 2 0.932 23220 380.9
bank 0.414 151685 435.2 4 0.816 8437 339.9 21 0.905 309 251.1 21 0.903 309 251.1
sensorless 0.106 34011 301.3 3 0.097 50 49 2 0.099 419 199 2 0.010 419 199

TABLE IV: Comparison of Random Forest and Decision Snippet Features. Shown are accuracy on test set (Acc.), node count
(size) and inference complexity (Avg.I) for random forests of maximum depth d ∈ {5, 10, 15, 20} and best decision snippet
features mined from that depth. θ reports the frequency threshold used for the best decision snippets. Numbers in bold show
the highest test set accuracy per dataset among random forests, and decision snippet features.

of pruning decision trees. See, e.g., ] for surveys on pre
and postpruning. While decision snippets can be seen as an
(extreme) form of pruning due to the size reduction, we note
that typical pruning approaches map a single tree to a single
tree (with fewer vertices) and maintain the inference scheme of
the original decision tree, while our decision snippet features
allow to extract multiple decision snippets per decision tree in
a random forest.

VII. CONCLUDING REMARKS

We have proposed decision snippet features which are
defined based on frequent subtrees in trained random forests.
The empirical results on standard benchmark datasets indicate
that they typically achieve predictive performances comparable
to the original random forests, at a fraction of the size. This
increases the interpretability of the resulting model and allows
application in embedded devices with strict memory and power
constraints.

We expect that our work can benefit from post-processing of
random forests to increase their regularity. Recently, Nakamura
and Sakurada [12] have given an algorithm that reduces the

number of distinct branching conditions in random forests
on real-valued domains. Such an approach would likely in-
crease the probability of large frequent subtrees. Whether the
combination of the two approaches results in higher accuracy
decision snippet features is left for future work.
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