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Abstract. Naturally, graph structured data is not easy to learn from. As
opposed to itemsets which can be represented by a table of fixed length,
there is no obvious representation language for graphs which allows for
an easy similarity measure in order to perform e.g. classification tasks on
sets of graphs. There have been introduced numerous graph kernels which
tackle the problem of defining a suitable similarity between graphs by
incorporating structural information. In this article, however, we revert
to the very simplistic approach which is to regard a graph as a (multi-
) itemset made up of node and edge labels. We consider our method
as a baseline and compare it to several established graph kernels on a
wide range of benchmark datasets. Our observations suggest that for the
overwhelming number of available datasets, actually utilizing the graphs’
structure in graph kernels does not significantly improve the classification
accuracy.

1 Introduction

Graph kernels have been a well established and significant research topic in learn-
ing from graph structured data for well over a decade. Starting with the random
walk kernel [6], a wide variety of specialized kernels have been proposed. Some
of the most significant approaches include kernels operating on subtrees such as
the Weisfeiler Lehman Subtree kernel [15], as well as approaches measuring sim-
ilarity based on common shortest paths such as [2]. Furthermore, (probabilistic)
frequent subgraphs can be used to define graph kernels [5, 18].

Despite the richness of methods for the computation of similarities between
graphs, the public availability of benchmark datasets and thus the possibility
to evaluate these methods is rather sparse. As a consequence, an overwhelming
amount of graph kernel publications evaluate their approaches on only very
few benchmark graph datasets. To a great extend these benchmark datasets
are limited to annotated molecular graphs of almost tree-like structure. While
the graph community has somewhat unofficially agreed upon utilizing this fixed
set of graph data, their suitability as benchmark tests is rarely questioned. Only
recently larger corpora of benchmark datasets have become available [9] on which
researchers started to evaluate graph kernels [4, 10].

In this paper, we (re-)introduce a simple kernel for labeled graphs which
completely disregards all structure but merely considers a graph as a multi set
of node and edge labels. This obviously challenges our intuition that the graph
structure should be essential to obtain expressive similarity measures. It turns



out, however, that each tested graph kernel performs significantly better than our
simple baseline method on only a small fraction of graph classification tasks in a
large corpus hosted at TU Dortmund [9]. Often, they even perform significantly
worse. This raises concerns on the suitability of currently available benchmark
graph datasets for the evaluation of graph kernels.

2 The No-Graph Baseline Kernel

Similarity based learning requires a similarity measure between pairs of objects
under consideration. The central task of graph kernels is to define a semantically
relevant similarity measure that behaves like a scalar product in some Hilbert
space in order to apply kernelized learning methods such as SVMs to graph
structured data. All graph kernel papers that we are aware of (e.g., [2, 6, 7, 8,
10, 13, 15, 18, 19]) either explicitly or implicitly assume that the topological
structure of the graphs should be taken into account when designing a kernel for
graph-structured data in order to succeed at a given learning task.

While graph kernels try to consider properties of the graphs’ topologies, we
pursue the exact opposite approach. Our No-Graph Kernel (NoG) is specifically
designed to disregard all topological structure and perceives a graph simply as
a multiset of node and edge labels. We explicitly construct feature vectors for
graphs by counting the number of times a label appears in the graph and apply
the radial basis function (rbf) kernel to these feature vectors. Unlabeled graphs
are considered as graphs with a single node label and a single edge label which
yields a two-dimensional feature vector containing the number of nodes and
edges only.

More formally, we consider undirected graphs of the form G = (V,E, `V , `E)
where V is a set of vertices, E ⊆ {{u, v} : u, v ∈ V, u 6= v} is a set of edges
and `V : V → ΣV , `E : E → ΣE are labeling functions mapping vertices (resp.
edges) to elements of non-empty, finite alphabets. We assume ΣV ∩ΣE = ∅. We
then define the feature vector of G as

ϕ(G) := (ψl(G))l∈ΣV ∪ΣE

with

ψl(G) =

{
|{v ∈ V, `V (v) = l}| if l ∈ ΣV
|{e ∈ E, `E(e) = l}| if l ∈ ΣE

Let G, G′ be two graphs and let k be the rbf kernel (on real valued vectors).
Then our baseline kernel NoG is defined as

kNoG(G,G′) = k(ϕ(G), ϕ(G′)) .

3 Related Work

Our work confirms recent results in [4, 10, 12] that were obtained with different
kernels on sub-corpora of the benchmark datasets considered in this paper. [4]



introduces the LDP kernel for unlabeled graphs that considers for each vertex the
degree information of itself and its 1-neighborhood as a five-dimensional vector.
The local degree profile (LDP) kernel is then defined as the concatenation of
five histograms over all vertices in the graph. The LDP kernel is subject to
five parameters which control the generation of histograms and which need to
be tuned in the learning process. [10] considers three different baseline kernels
which count the number of labeled subgraphs of sizes one, two, and three. This
corresponds to graphlet kernels [16] using parameters k = 1, 2, 3, respectively.
[12] considers vertex labels (i.e., single vertex graphlets) and alternatively the
number of vertices only, on six benchmark datasets.

Our work differs from the above studies in a few ways: In contrast to [4], our
NoG kernel uses edge and vertex label information but no topological informa-
tion and does not have any parameters that need to be tuned for the feature
extraction step. Compared to [12], our NoG kernel is more complex by con-
sidering edge labels as well. However, we do not consider graphlets consisting
of two vertices (i.e., labeled vertex – edge – vertex triples) as done in [10] but
merely utilize label information. Hence, we do not make use of any structural
information of graphs whatsoever. Regarding the empirical evaluation, we con-
sider more datasets than the above studies and employ a statistical analysis to
measure whether differences in average accuracies are actually significant.

4 Experimental Evaluation

In this section, we evaluate our method by comparing it to several known graph
kernels on a large subset of benchmark classification datasets from [9].

Datasets An overwhelming amount of datasets in [9] belong to the class of
molecular graphs such as MUTAG, PTC, NCI and AIDS. Each graph represents
a molecule made up of atoms (vertices) and covalent bonds (edges). Graphs
are often annotated against whether or not they have a specific (bio-) chemical
property. Another class of benchmark graph datasets deals with the prediction
task of enzyme memberships such as ENZYMES and PROTEIN. A protein
is modeled as a graph encapsulating information like structure, sequence and
various chemical properties [3]. The datasets IMDB and REDDIT belong to a
class of graphs which were extracted from online networks. IMDB consists of
collaboration networks between actors/actresses each annotated against movie
genres, whereas graphs in REDDIT represent user interactions in discussion
forums with graphs being annotated by the type of forum [19]. [9] includes several
attributed graphs which were generated from images. E.g., COIL-RAG consists
of region adjacency graphs based on small segmented images of objects [14].
Graphs in the Letter datasets represent capital letters of the roman alphabet with
edges being lines and nodes being their endpoints (with 2-dimensional coordinate
attribute vectors) [14].

Experimental Setup We compare a variety of well-established graph kernels
to our baseline kernel (NoG). We used the implementations of the Weisfeiler



Lehman (wl) kernel [15], the graphlet sampling (gs) kernel [16], the shortest path
(sp) [6] kernel, and the random walk (rw) [3] kernel as provided by the GraKel
library [17]. Furthermore, we considered the (boosted) probabilistic frequent
subtree kernels (psf, bpsf) [18] and the cyclic pattern kernel (cp) [7] using the
authors’ implementations and a frequent subgraph kernel (fsg) based on the FSG
implementation [11].

Using a 10-fold cross-validation, the predictive performance was measured in
terms of accuracy obtained by support vector machines (SVM). In each fold, we
used a grid search to identify the optimal parameters for each kernel (such as
SVM and further individual kernel parameters) on the test data using a 3-fold
cross validation. The SVM parameter C was selected from the set {2i : i ∈
{−11,−9,−7,−5,−3,−1, 0, 1, 3, 5, 7, 9, 11}}. For the Weisfeiler Lehman kernel,
the grid search was performed over values k (the number of iterations) ranging
from 1 to 8. The shortest path kernel was set up such that it regarded graph
labels if available. In case of the random walk kernel, the grid search considered
weight parameters λ ∈ {10i : i ∈ {−2,−3,−4}}. For the graphlet sampling
kernel, we set ε = 0.1, δ = 0.1 and k ∈ {3, 4, 5} where k is the graphlet size
(as suggested by [16]). The (boosted) probabilistic frequent subtree kernel, as
well as the frequent subgraph kernel required an explicit pattern mining process
in advance. We enumerated patterns up to size 10 that passed the frequency
threshold of θ = 10%. For psf and bpsf we used a sampling parameter k = 10
(as suggested by [18]). Using the feature vectors defined by such patterns, we
employed a linear kernel for the classification process. As for the cyclic pattern
kernel, we utilized the simple variant operating with a linear kernel. Finally, for
our baseline (NoG) we tuned the radial basis function parameter γ ∈ {2i : i ∈
{−1,−3,−5,−7,−9,−11}}.

To identify significant differences in the accuracies achieved by the individual
kernels compared to the NoG kernel, we used the paired variant of Student’s
t-test on each dataset, resulting in 261 statistical tests. To make up for the
large number of tests, we used the Benjamini and Hochbergs method [1] with a
significance level of 0.05.

Observations Figure 1 on page 5 shows the prediction performances of estab-
lished graph kernels compared to our baseline (NoG) kernel. We provide accuracy
values for NoG; for the other kernels, we only provide accuracies if they signifi-
cantly differ according to our statistical test. The coloring of the cells illustrates
the degree of difference if significant. Otherwise the cell is left white. Blue cells
indicate a favorable result of the comparing method, whereas red points out that
the baseline performed significantly better.

In several cases we were not able to obtain results due to memory errors
or time constraints. These cases are depicted in gray. In particular, we tried
to compute the sets of frequent subgraphs for the fsg kernel using the FSG
software [11]. However, the tool often did not terminate within 12 hours on our
machine (Intel i7-4770, 16GB RAM) or alternatively produced a pattern set
and corresponding feature vectors that were too large to fit into main memory
in the downstream learning task. cp also failed in many cases, however, much
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Fig. 1. Prediction measures in accuracy (in %) achieved by graph kernels compared
to the NoG kernel. Red color indicates a significantly worse result, blue a significantly
better result. White cells indicate no significant difference, while gray cells indicate
failure to compute the kernel on a dataset.



sooner than FSG due to an out of memory error. This is due to the fact that
our implementation of cp does not have a parameter that stops it from possibly
enumerating exponentially many cycles. Some graph kernels from [17] were also
very slow to compute. In particular, rw could not terminate in reasonable time
on many datasets.

Our results show that for an overwhelming amount of datasets the baseline
method does not perform significantly worse than the comparing graph kernels.
Rather the opposite is the case. With the exception of the Weisfeiler Lehman
kernel, the comparing methods fall behind the baseline on more datasets than
they exceed it. Furthermore, even wl outperforms the baseline in only very few
cases like NCI1, NCI109 and SYNTHETICnew.

5 Conclusion

In this article we introduced a very simple kernel that considers graphs as multi
sets of their vertex and edge labels while completely disregarding their topology.
We evaluated a variety of state-of-the-art graph kernels by comparing them to
our method on a wide range of benchmark datasets. The results show that there
are only very few combinations of kernels and datasets for which the predictive
power of a graph kernel for the task at hand significantly exceeds our baseline
method. This suggests that a majority of established graph benchmark datasets
are not well suited as an indicator for the quality of graph kernels, making the
term ‘benchmark’ quite misleading. We found no general indication that the
sophisticated graph similarity measures, which were evaluated in this article,
clearly improve classification results on these datasets over our very simplistic
approach.

Our findings for one suggest the need for more challenging graph datasets
that highlight the power of graph kernels. In particular, we require datasets for
which the classification accuracy depends on the type and amount of structural
information that is implicitly being considered in a graph kernel. On a different
note, in order to properly evaluate graph kernels, a set of baseline methods
is imperative. This also requires a comparison method between the different
approaches using statistical measures. As a consequence, we hope for a more
systematic evaluation of graph kernels in the community.
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