
Expectation Complete
Graph Representations Using

Graph Homomorphisms
Maximilian Thiessen∗ 1 Pascal Welke∗ 2 Thomas Gärtner 1

1TU Wien 2University of Bonn

TL;DR

Through the power of random features
we devise efficiently computable and
expectation complete graph embeddings.

Expressiveness

Graph representation methods are compared to
each other in terms of expressiveness. That is,
their (theoretical) ability to compute different rep‐
resentations for pairs of non‐isomorphic graphs.

For example, MPNNs are at most as expressive as
the 1‐WL isomorphism test.

High expressiveness is necessary for learning: If
your method cannot distinguish two graphs, it
cannot learn a function that behaves differently
on these graphs.

Completeness

G the set of all graphs, V a vector space (e.g., Rd)

A graph embedding φ : G → V is permutation‐
invariant if for all isomorphic graphs

G ≃ H : φ(G) = φ(H)

A permutation‐invariant graph embedding φ is
complete if for all non‐isomorphic graphs

G ̸≃ H : φ(G) ̸= φ(H)

Originated from complete graph kernels [Gärtner et
al., COLT 2003]

Problem

Why do we care about complete graph embed‐
dings?

Allow us to learn/approximate any
permutation‐invariant function!

Unfortunately computing any such embedding is
at least as hard as deciding graph isomorphism

not known to be NP‐hard and not known to be
computable in polynomial‐time

Typical solution: drop completeness for efficiency

most practical graph kernels, GNNs, Weisfeiler
Leman test, k‐WL test, …

Our solution: keep completeness in expectation!

Complete in Expectation
Let φX : G → V depend on a random variable X drawn from a distribution
D over a set X
We call φX complete in expectation if the expectation

EX∼D[φX(·)] =
∑
t∈X

Pr(X = t)φt(·)

is a complete graph embedding

What is the benefit?

Sampling X1, X2, X3, . . . will eventually make the
joint embedding (φX1(G), φX2(G), φX3(G), . . .) arbitrarily expressive

1‐WL

2‐WL

3‐WL

...
k‐WL

φX

Our Approach: Sampling from the Lovász Vector

Let Gn be the set of all graphs with at most n vertices.

the parameter n is typically the size of the largest graph in the sample.

Theorem. Let D be a distribution with full support on Gn and G ∈ Gn. The graph embedding

φF (G) = hom(F, G)eF

with F ∼ D is complete in expectation.

20
30 ←
50
10 ←

... ...
40 ←

... ...
4 ←

... ...

0
30
0
10

... 0
40

... 0
4

... 0

G φn(G) φF(G)

Proposed embedding: sample multiple pattern graphs F

draw a finite sample F i.i.d from D and represent any graph G ∈ Gn by

φF(G) =
∑
F∈F

φF (G)

reduces the variance of the embedding
currently ℓ = |F| is a fixed hyperparameter (e.g., ℓ = 30)

Efficient Sampling Scheme

Computing hom(F, G) is NP‐hard in general.

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

O
(
|V (F)||V (G)|tw(F)+1

)
Idea: define distribution D on Gn s.t. runtime is polynomial in expectation!

Theorem. There exists a distribution D such that computing the expectation complete graph em‐
bedding φF (G) takes polynomial time in |V (G)| in expectation for all G ∈ Gn.

General recipe:

1. pick n as the maximum number of vertices in the training set
2. sample treewidth upper bound k
3. sample a maximal graph F ′ with treewidth k
4. take a random subgraph F of F ′

E.g., k ∼ Poi(λ) with λ ≤ 1+d log n
n guarantees runtime O

(
|V (G)|d+2

)

Homomorphisms

Let F, G be graphs. A map φ : V (F)→ V (G) is a
graph homomorphism if φ preserves edges:

{v, w} ∈ E(F) implies {φ(v), φ(w)} ∈ E(G) .

φ does not have to be injective (!)

hom(F, G): number of homomorphisms from F
to G.

The Lovász Vector

Let φn(G) = hom(Gn, G) = (hom(F, G))F∈Gn
de‐

note the Lovász vector of G for Gn.

Theorem [Lovász, 1968]. Two arbitrary graphs
G, H ∈ Gn are isomorphic iff φn(G) = φn(H).
That means that φn(·) is complete!

Properties of Homomorphism Counts

Counting subgraphs [Curticapean et al., STOC 2017]

Universality [NT and Maehara, ICML 2020]: Any
permutation‐invariant function

f : G → Rd

can be approximated arbitrarily well by a polyno‐
mial of

{hom(F, G) | F ∈ G}

Working on Arbitrary Graph Sizes

If we cannot restrict the size of graphs at inference time, we
can define a kernel on G∞ without restricting to Gn for some
n ∈ N. We define the countable‐dimensional vector

φ∞(G) =
(

hom|V (G)|(F, G)
)

F∈G∞
where

hom|V (G)|(F, G) =

{
hom(F, G) if |V (F)| ≤ |V (G)| ,
0 if |V (F)| > |V (G)| .

That is, φ∞(G) is the projection of φ∞(G) to the subspace
that gives us the homomorphism counts for all graphs of size
at most of G. Note that this is a well‐defined map of graphs
to a subspace of the ℓ2 space, i.e., sequences (xi)i over R
with

∑
i |xi|2 <∞.

Theorem. φ∞ is complete.

Theorem. φX is complete in expectation.

The map φ∞ even maps all graphs into an inner product
space and allows to compute norms or distances, and to ap‐
ply kernel methods.

Empirical Results

Our method with ℓ = 30 sampled patterns and the φ∞ embedding

Deterministic embeddings as baseline [NT and Maehara, ICML 2020]

GHC‐tree(6): all tree patterns up to size 6
GHC‐cycle(8): all cycle patterns up to size 8

Additionally:

graph neural tangent kernel (GNTK) [Du et al., NeurIPS 2019]
GIN [Xu et al., ICLR 2019]

Table 1. Cross‐validation accuracies on benchmark datasets

method MUTAG IMDB‐BIN IMDB‐MULTI PAULUS25 CSL

GHC‐tree(6) 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40 7.14 ± 0.00 10.00 ± 0.00
GHC‐cycle(8) 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00
GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00
GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 0.00 10.00 ± 0.00
WL‐kernel 90.4 ± 5.7 73.12 ± 0.4 ‐ 7.14 ± 0.00 10.00 ± 0.00

ours (SVM) 87.94 ± 0.01 70.37 ± 0.01 47.34 ± 0.01 100.00 ± 0.00 37.33 ± 0.1
ours (MLP) 88.55 ± 0.01 70.81 ± 0.01 48.29 ± 0.01 40.524 ± 0.01 13.27± 0.01

Relations to k-WL and k-GNNs

Theorem. LetD be a distribution with full support on the set
of graphs with treewidth up to k. The resulting graph em‐
bedding φk‐WL

F (·) with F ∼ D has the same expressiveness
as the k‐WL test in expectation. Furthermore, there is a spe‐
cific such distribution such that we can compute φk‐WL

F (G)
in expected polynomial time O(|V (G)|k+1) for all G ∈ G∞.

Future Work

Choose number of patterns ℓ and distribution D adaptively:

stop sampling when expressive enough
pick D based on the task or a given dataset
frequent / interesting patterns

Going beyond expressiveness: similarity!

if G ≈ H then φ(G) ≈ φ(H)
possible solution: cut distance (captures local and global
properties)

https://mlai.cs.uni-bonn.de Graph Learning Frontiers Workshop | GLFrontiers@NeurIPS 2022 https://ml-tuw.github.io/

https://maxthiessen.ml
https://mlai.cs.uni-bonn.de/people/pascal-welke
https://thomasgaertner.org/
https://ml-tuw.github.io/
https://mlai.cs.uni-bonn.de/
https://mlai.cs.uni-bonn.de
https://glfrontiers.github.io/
https://ml-tuw.github.io/

