

Expectation Complete Graph Representations Using Graph Homomorphisms

Maximilian Thiessen^{* 1} Pascal Welke^{* 2} Thomas Gärtner¹

> ²University of Bonn ¹TU Wien

TL;DR

Through the power of random features we devise efficiently computable and expectation complete graph embeddings.

Expressiveness

Graph representation methods are compared to each other in terms of expressiveness. That is, their (theoretical) ability to compute different representations for pairs of non-isomorphic graphs.

For example, MPNNs are at most as expressive as

Complete in Expectation

k-WL

3-WL

2-WL

1-WL

 φ_X

Let $\varphi_X : \mathcal{G} \to V$ depend on a random variable X drawn from a distribution ${\mathcal D}$ over a set ${\mathcal X}$

We call φ_X complete in expectation if the expectation

 $\mathbb{E}_{X \sim \mathcal{D}}[\varphi_X(\cdot)] = \sum_{t \in \mathcal{X}} \Pr(X = t)\varphi_t(\cdot)$

is a complete graph embedding

What is the **benefit**?

Sampling X_1, X_2, X_3, \ldots will eventually make the joint embedding $(\varphi_{X_1}(G), \varphi_{X_2}(G), \varphi_{X_3}(G), \dots)$ arbitrarily expressive

Let F, G be graphs. A map $\varphi : V(F) \to V(G)$ is a graph homomorphism if φ preserves edges: $\{v, w\} \in E(F) \text{ implies } \{\varphi(v), \varphi(w)\} \in E(G).$

the 1-WL isomorphism test.

High expressiveness is necessary for learning: If your method cannot distinguish two graphs, it cannot learn a function that behaves differently on these graphs.

Completeness

 \mathcal{G} the set of all graphs, V a vector space (e.g., \mathbb{R}^d) A graph embedding $\varphi : \mathcal{G} \to V$ is permutationinvariant if for all isomorphic graphs

 $G \simeq H : \varphi(G) = \varphi(H)$

A permutation-invariant graph embedding φ is complete if for all non-isomorphic graphs

 $G \not\simeq H : \varphi(G) \neq \varphi(H)$

Originated from complete graph kernels [Gärtner et

Our Approach: Sampling from the Lovász Vector

Let \mathcal{G}_n be the set of all graphs with at most n vertices.

• the parameter n is typically the size of the largest graph in the sample.

Theorem. Let \mathcal{D} be a distribution with full support on \mathcal{G}_n and $G \in \mathcal{G}_n$. The graph embedding

 $\varphi_F(G) = \hom(F, G)e_F$

with $F \sim \mathcal{D}$ is complete in expectation.

Proposed embedding: sample multiple pattern graphs F

• draw a finite sample \mathcal{F} i.i.d from \mathcal{D} and represent any graph $G \in \mathcal{G}_n$ by

$$\varphi_{\mathcal{F}}(G) = \sum_{F \subset \mathcal{F}} \varphi_F(G)$$

 φ does not have to be injective (!)

hom(F,G): number of homomorphisms from F to G.

The Lovász Vector

Let $\varphi_n(G) = \hom(\mathcal{G}_n, G) = (\hom(F, G))_{F \in \mathcal{G}_n} \text{ de-}$ note the Lovász vector of G for \mathcal{G}_n .

Theorem [Lovász, 1968]. Two arbitrary graphs $G, H \in \mathcal{G}_n$ are isomorphic iff $\varphi_n(G) = \varphi_n(H)$. That means that $\varphi_n(\cdot)$ is complete!

Properties of Homomorphism Counts

 $hom(\{0\}, G) = |V(G)|$ hom (go-o}, a) = 2(E(a))

Problem

Why do we care about complete graph embeddings?

> Allow us to learn/approximate any permutation-invariant function!

Unfortunately computing any such embedding is at least as hard as deciding graph isomorphism

not known to be NP-hard and not known to be computable in polynomial-time

Typical solution: drop completeness for efficiency

 most practical graph kernels, GNNs, Weisfeiler Leman test, k-WL test, ...

Our solution: keep completeness in expectation!

reduces the variance of the embedding • currently $\ell = |\mathcal{F}|$ is a fixed hyperparameter (e.g., $\ell = 30$)

Efficient Sampling Scheme

```
Computing hom(F, G) is NP-hard in general.
```

If we take the treewidth of pattern F into account the runtime is [Díaz et al., 2002]:

 $\mathcal{O}\left(|V(F)||V(G)|^{\operatorname{tw}(F)+1}\right)$

Idea: define distribution \mathcal{D} on \mathcal{G}_n s.t. runtime is polynomial in expectation!

Theorem. There exists a distribution \mathcal{D} such that computing the expectation complete graph embedding $\varphi_F(G)$ takes polynomial time in |V(G)| in expectation for all $G \in \mathcal{G}_n$.

General recipe:

- 1. pick n as the maximum number of vertices in the training set
- 2. sample treewidth upper bound k3. sample a maximal graph F' with treewidth k

4. take a random subgraph F of F'

```
E.g., k \sim \operatorname{Poi}(\lambda) with \lambda \leq \frac{1+d\log n}{n} guarantees runtime \mathcal{O}\left(|V(G)|^{d+2}\right)
```

```
hom ({FIF is a tree 3, G) $= 1-WL $GNUs
hom ({FItw(F) ≤ k3, G) $= k-WL $GNUs
Lireewidth of F ("tree-likewess")
```

Counting subgraphs [Curticapean et al., STOC 2017]

$$sub(\overset{\circ}{}, \alpha) =$$

$$\pi 12 hom(\overset{\circ}{}, \alpha) =$$

$$- hom(\overset{\circ}{}, \alpha) - hom(\overset{\circ}{}, \alpha)$$

$$- 112 hom(\overset{\circ}{}, \alpha) + 3/2 hom(\overset{\circ}{}, \alpha)$$

$$+ 5/2 hom(\overset{\circ}{}, \alpha) - hom(\overset{\circ}{}, \alpha)$$

Universality [NT and Maehara, ICML 2020]: Any permutation-invariant function

$f:\mathcal{G}\to\mathbb{R}^d$

can be approximated arbitrarily well by a polynomial of

 $\{\hom(F,G) \mid F \in \mathcal{G}\}$

Working on Arbitrary Graph Sizes

If we cannot restrict the size of graphs at inference time, we can define a kernel on \mathcal{G}_{∞} without restricting to \mathcal{G}_n for some $n \in \mathbb{N}$. We define the countable-dimensional vector $\overline{\varphi}_{\infty}(G) = \left(\hom_{|V(G)|}(F,G)\right)_{F \in \mathcal{G}_{\infty}}$ where $\hom_{|V(G)|}(F,G) = \begin{cases} \hom(F,G) & \text{if } |V(F)| \le |V(G)|, \\ 0 & \text{if } |V(F)| > |V(G)|. \end{cases}$

Our method with $\ell = 30$ sampled patterns and the $\overline{\varphi}_{\infty}$ embedding

Empirical Results

Deterministic embeddings as baseline [NT and Maehara, ICML 2020]

Relations to *k***-WL and** *k***-GNNs**

Theorem. Let \mathcal{D} be a distribution with full support on the set of graphs with treewidth up to k. The resulting graph embedding $\varphi_F^{k-\mathsf{WL}}(\cdot)$ with $F \sim \mathcal{D}$ has the same expressiveness as the k-WL test in expectation. Furthermore, there is a specific such distribution such that we can compute $\varphi_F^{k-\mathsf{WL}}(G)$ in expected polynomial time $\mathcal{O}(|V(G)|^{k+1})$ for all $G \in \mathcal{G}_{\infty}$.

That is, $\overline{\varphi}_{\infty}(G)$ is the projection of $\varphi_{\infty}(G)$ to the subspace that gives us the homomorphism counts for all graphs of *size* at most of G. Note that this is a well-defined map of graphs to a subspace of the ℓ^2 space, i.e., sequences $(x_i)_i$ over \mathbb{R} with $\sum_i |x_i|^2 < \infty$.

Theorem. $\overline{\varphi}_{\infty}$ is complete.

Theorem. $\overline{\varphi}_X$ is complete in expectation.

The map $\overline{\varphi}_{\infty}$ even maps all graphs into an inner product space and allows to compute norms or distances, and to apply kernel methods.

- GHC-tree(6): all tree patterns up to size 6
- GHC-cycle(8): all cycle patterns up to size 8

Additionally:

• graph neural tangent kernel (GNTK) [Du et al., NeurIPS 2019]

• GIN [Xu et al., ICLR 2019]

Table 1. Cross-validation accuracies on benchmark datasets

method	MUTAG	IMDB-BIN	IMDB-MULTI	PAULUS25	CSL
GHC-tree(6) GHC-cycle(8) GNTK GIN WL-kernel	89.28 ± 8.26 87.81 ± 7.46 89.46 ± 7.03 89.40 ± 5.60 90.4 ± 5.7	$72.10 \pm 2.62 70.93 \pm 4.54 75.61 \pm 3.98 70.70 \pm 1.10 73.12 \pm 0.4$	48.60 ± 4.40 47.41 ± 3.67 51.91 ± 3.56 43.20 ± 2.00 -	$7.14 \pm 0.00 \\7.14 \pm 0.00$	$\begin{array}{c} 10.00 \pm 0.00 \\ 100.00 \pm 0.00 \\ 10.00 \pm 0.00 \\ 10.00 \pm 0.00 \\ 10.00 \pm 0.00 \end{array}$
ours (SVM) ours (MLP)	87.94 ± 0.01 88.55 ± 0.01	70.37 ± 0.01 70.81 ± 0.01	47.34 ± 0.01 48.29 ± 0.01	100.00 ± 0.00 40.524 ± 0.01	37.33 ± 0.1 13.27 ± 0.01

Future Work

Choose number of patterns ℓ and distribution \mathcal{D} adaptively:

stop sampling when expressive enough • pick \mathcal{D} based on the task or a given dataset frequent / interesting patterns

Going beyond expressiveness: similarity!

• if $G \approx H$ then $\varphi(G) \approx \varphi(H)$

• possible solution: cut distance (captures local and global) properties)

Graph Learning Frontiers Workshop | GLFrontiers@NeurIPS 2022