Maximum Margin Separations in Finite Closure Systems

Florian Seiffarth Tamás Horváth Stefan Wrobel

Separating hyper-plane

classical machine learning problem (Rosenblatt, 1958)

Separating hyper-plane (arbitrary)

classical machine learning problem (Rosenblatt, 1958), not unique, over-fitting

Separating hyper-plane (arbitrary)

classical machine learning problem (Rosenblatt, 1958), not unique, over-fitting

Maximum margin separation (unique)

- classical machine learning problem (Rosenblatt, 1958), not unique, over-fitting
- support vector machines (Vapnik, 1992), unique

Maximum margin separation (unique)

- classical machine learning problem (Rosenblatt, 1958), not unique, over-fitting
- support vector machines (Vapnik, 1992), unique

Maximum margin separation (unique)

- classical machine learning problem (Rosenblatt, 1958), not unique, over-fitting
- support vector machines (Vapnik, 1992), unique

Adaptions:

 \rightarrow

Adaptions:

 \mathbb{R}^d

Adaptions:

 \mathbb{R}^{d}

$$\rightarrow$$
 E (*finite* ground set)

Adaptions:

\mathbb{R}^{d}	\rightarrow	E (finite ground set)
convexity	\rightarrow	

Adaptions:

 \mathbb{R}^d

- \rightarrow E (finite ground set)
- convexity \rightarrow closure operator

Adaptions:

 $\begin{array}{ccc} \mathbb{R}^d & \to & E \mbox{ (finite ground set)} \\ \mbox{convexity} & \to & \mbox{closure operator} \\ \mbox{convex hull} & \to & \end{array}$

Adaptions:

\mathbb{R}^{d}	\rightarrow	E (finite ground set)
convexity	\rightarrow	closure operator
convex hull	\rightarrow	closed set

Adaptions:

\mathbb{R}^{d}	\rightarrow	E (finite ground set)
convexity	\rightarrow	closure operator
convex hull	\rightarrow	closed set
all convex hulls	\rightarrow	

Definition:

closure operator *c* over *E*:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

•
$$c(c(A)) = c(A)$$

Definition: closure system (E, C): • $\emptyset, E \in C$ • $A, B \in C \Rightarrow A \cap B \in C$

Adaptions:

\mathbb{R}^{d}	\rightarrow	E (finite
convexity	\rightarrow	closure o
convex hull	\rightarrow	closed se
all convex hulls	\rightarrow	closure s

- ground set)
- perator
- et
 - system

Definition:

closure operator c over E:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

•
$$c(c(A)) = c(A)$$

Definition: closure system (E, C): • Ø, *E* ∈ *C* • $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$

Adaptions:

\mathbb{R}^{d}	\rightarrow
convexity	\rightarrow
convex hull	\rightarrow
all convex hulls	\rightarrow
separation	\rightarrow

- E (finite ground set)
- \rightarrow closure operator
- \rightarrow closed set
- \rightarrow closure system

Definition:

closure operator *c* over *E*:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

•
$$c(c(A)) = c(A)$$

Definition: closure system (E, C): • $\emptyset, E \in C$ • $A, B \in C \Rightarrow A \cap B \in C$

Adaptions:

 \mathbb{R}^{d}

convexity

convex hull

all convex hulls separation

- \rightarrow *E* (*finite* ground set)
- \rightarrow closure operator
- $\rightarrow \quad \text{closed set} \quad$
- \rightarrow closure system
- \rightarrow disjoint closed sets

Definition:

closure operator *c* over *E*:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

•
$$c(c(A)) = c(A)$$

Definition:

- $\emptyset, E \in C$
- $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$

Adaptions:

 \mathbb{R}^{d}

convexity

convex hull

all convex hulls

separation

metric

- \rightarrow *E* (*finite* ground set)
- \rightarrow closure operator
- \rightarrow closed set

 \rightarrow

- \rightarrow closure system
- \rightarrow disjoint closed sets

Definition:

closure operator *c* over *E*:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

$$c(c(A)) = c(A)$$

Definition:

- $\emptyset, E \in C$
- $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$

Adaptions:

 \mathbb{R}^d

convexity

convex hull

all convex hulls

separation

metric

- \rightarrow *E* (*finite* ground set)
- \rightarrow closure operator
- $\rightarrow \quad \text{closed set}$
- \rightarrow closure system
- \rightarrow disjoint closed sets
- \rightarrow monotone linkage function

Definition:

closure operator *c* over *E*:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

• c(c(A)) = c(A)

Definition:

- $\emptyset, E \in C$
- $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$

Adaptions:

\mathbb{R}^{d}	
convexity	

- convex hull
- all convex hulls
- separation
- metric
- separation margin \rightarrow

- E (finite ground set) \rightarrow
- closure operator
- closed set \rightarrow
- closure system \rightarrow
- disjoint closed sets \rightarrow
- monotone linkage function \rightarrow

Definition:

closure operator c over E:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

• c(c(A)) = c(A)

Definition:

- Ø, *E* ∈ *C*
- $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$

Adaptions:

\mathbb{R}^{d}	\rightarrow	E (finite ground set)
convexity	\rightarrow	closure operator
convex hull	\rightarrow	closed set
all convex hulls	\rightarrow	closure system
separation	\rightarrow	disjoint closed sets
metric	\rightarrow	monotone linkage function
separation margin	\rightarrow	?

• How to define margins in finite closure systems?

Definition:

closure operator *c* over *E*:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

• c(c(A)) = c(A)

Definition:

- $\emptyset, E \in \mathcal{C}$
- $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$

Adaptions:

\mathbb{R}^{d}	\rightarrow	E (finite ground set)
convexity	\rightarrow	closure operator
convex hull	\rightarrow	closed set
all convex hulls	\rightarrow	closure system
separation	\rightarrow	disjoint closed sets
metric	\rightarrow	monotone linkage function
separation margin	\rightarrow	?

- How to define margins in finite closure systems?
- Which properties should be preserved?

Definition:

closure operator *c* over *E*:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

• c(c(A)) = c(A)

Definition:

- $\emptyset, E \in \mathcal{C}$
- $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$

Adaptions:

\mathbb{R}^{d}	\rightarrow	E (finite ground set)
convexity	\rightarrow	closure operator
convex hull	\rightarrow	closed set
all convex hulls	\rightarrow	closure system
separation	\rightarrow	disjoint closed sets
metric	\rightarrow	monotone linkage function
separation margin	\rightarrow	?

- How to define margins in finite closure systems?
- Which properties should be preserved?
- Goal: Efficient algorithm!

Definition:

closure operator *c* over *E*:

• $A \subseteq c(A)$

•
$$A \subseteq B \Rightarrow c(A) \subseteq c(B)$$

• c(c(A)) = c(A)

Definition:

- $\emptyset, E \in \mathcal{C}$
- $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$

Maximum Margins in Finite Closure Systems

Florian Seiffarth, Tamás Horváth, Stefan Wrobel Maximum Margin Separations in Finite Closure Systems

Function $I: 2^E \to E$ such that

$$X \subseteq Y \Rightarrow I(X, e) \ge I(Y, e)$$

Function $I: 2^E \to E$ such that

$${m X} \subseteq {m Y} \Rightarrow {m I}({m X}, {m e}) \geq {m I}({m Y}, {m e})$$

Function $I: 2^E \to E$ such that

$${m X} \subseteq {m Y} \Rightarrow {m I}({m X}, {m e}) \geq {m I}({m Y}, {m e})$$

Function $I: 2^E \to E$ such that

$$X \subseteq Y \Rightarrow I(X, e) \ge I(Y, e)$$

Function $I: 2^E \to E$ such that

$$X \subseteq Y \Rightarrow I(X, e) \ge I(Y, e)$$

Function $I: 2^E \to E$ such that

$$X \subseteq Y \Rightarrow I(X, e) \ge I(Y, e)$$

Some Practical Motivations:

Some Practical Motivations:

Trees

Florian Seiffarth, Tamás Horváth, Stefan Wrobel

Maximum Margin Separations in Finite Closure Systems
Some Practical Motivations:

Trees

Graphs (e.g. molecule, social graph, ...)

Some Practical Motivations:

Trees

Graphs (e.g. molecule, social graph, ...)

 requires semantically meaningful definition of closure system/operator and linkage function

• A node set X is **closed** if it contains all shortest paths between nodes in X.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.
- The **linkage** *l*(*X*, *y*) is the minimum length of a shortest path from node *y* to node set *X*

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.
- The linkage *l*(*X*, *y*) is the minimum length of a shortest path from node *y* to node set *X*, e.g. *l*(_, e) =

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.
- The linkage *l*(*X*, *y*) is the minimum length of a shortest path from node *y* to node set *X*, e.g. *l*(_, e) =

- A node set X is **closed** if it contains all shortest paths between nodes in X.
- The **closure** c(Y) is the smallest closed set containing Y.
- The linkage *l*(*X*, *y*) is the minimum length of a shortest path from node *y* to node set *X*, e.g. *l*(○, *e*) = 4.

Extend linkage functions to sets:

$$I(X, Y) := \min_{y \in Y} I(X, y)$$

Extend linkage functions to sets:

$$I(X, Y) := \min_{y \in Y} I(X, y)$$

Extend linkage functions to sets:

$$I(X, Y) := \min_{y \in Y} I(X, y)$$

Extend linkage functions to sets:

$$I(X, Y) := \min_{y \in Y} I(X, y)$$

Maximum-Margin Property:

a + b is maximal and a = b \Leftrightarrow min(a, b) is maximal

Finite Closure Systems:

Maximum-Margin Property:

a + b is maximal and a = b \Leftrightarrow min(a, b) is maximal

Florian Seiffarth, Tamás Horváth, Stefan Wrobel

Maximum Margin Separations in Finite Closure Systems

Maximum-Margin Property:

$$a + b$$
 is maximal and $a = b$
 \Leftrightarrow
min(a, b) is maximal

Florian Seiffarth, Tamás Horváth, Stefan Wrobel

Maximum Margin Separations in Finite Closure Systems

Finite Closure Systems:

Maximum-Margin Property:

$$a + b$$
 is maximal and $a = b$
 \Leftrightarrow
min(a, b) is maximal

Florian Seiffarth, Tamás Horváth, Stefan Wrobel

Finite Closure Systems:

Maximum-Margin Property:

$$a + b$$
 is maximal and $a = b$
 \Leftrightarrow
 $\min(a, b)$ is maximal

Florian Seiffarth, Tamás Horváth, Stefan Wrobel

Maximum Margin Separations in Finite Closure Systems

Finite Closure Systems:

Maximum-Margin Property:

min(a, b) is maximal

Given $A, B \subseteq E$, the *margin* for H and H^c is defined by

$$\mu_{H,H^c}(A,B) := \min\{I(c(A),H^c), I(c(B),H)\}$$
.

Given $A, B \subseteq E$, the *margin* for H and H^c is defined by

$$\mu_{H,H^c}(A,B) := \min\{I(c(A),H^c), I(c(B),H)\}$$
.

Given $A, B \subseteq E$, the *margin* for H and H^c is defined by

$$\mu_{H,H^c}(A,B) := \min\{I(c(A),H^c), I(c(B),H)\}$$
.

Given $A, B \subseteq E$, the *margin* for C_A and C_B is defined by

 $\mu_{\mathcal{C}_{\mathcal{A}},\mathcal{C}_{\mathcal{B}}}(\mathcal{A},\mathcal{B}) := \min\{I(c(\mathcal{A}),\mathcal{C}_{\mathcal{A}}^{c}),I(c(\mathcal{B}),\mathcal{C}_{\mathcal{B}}^{c})\} \ .$

• the margin for disjoint closed sets $C_A \supseteq A$, $C_B \subseteq B$ can be defined similarly

Given $A, B \subseteq E$, the *margin* for C_A and C_B is defined by

 $\mu_{\mathcal{C}_{\mathcal{A}},\mathcal{C}_{\mathcal{B}}}(\mathcal{A},\mathcal{B}) := \min\{I(c(\mathcal{A}),\mathcal{C}_{\mathcal{A}}^{c}),I(c(\mathcal{B}),\mathcal{C}_{\mathcal{B}}^{c})\} \ .$

• the margin for disjoint closed sets $C_A \supseteq A$, $C_B \subseteq B$ can be defined similarly
Margin

Given $A, B \subseteq E$, the *margin* for C_A and C_B is defined by

 $\mu_{\mathcal{C}_{\mathcal{A}},\mathcal{C}_{\mathcal{B}}}(\mathcal{A},\mathcal{B}) := \min\{I(c(\mathcal{A}),\mathcal{C}_{\mathcal{A}}^{c}),I(c(\mathcal{B}),\mathcal{C}_{\mathcal{B}}^{c})\} \ .$

• the margin for disjoint closed sets $C_A \supseteq A$, $C_B \subseteq B$ can be defined similarly

Given a monotone linkage closure system (E, C, I) and two sets $A, B \subseteq E$, find a half-space H which **maximizes** the margin, i.e.

$$\mathcal{H} = \operatorname*{argmax}_{\mathcal{H}_1, \mathcal{H}_1^c \in \mathcal{C}_c} \mu_{\mathcal{H}_1, \mathcal{H}_1^c}(\mathcal{A}, \mathcal{B})$$

Given a monotone linkage closure system (E, C, I) and two sets $A, B \subseteq E$, find a half-space H which **maximizes** the margin, i.e.

$$\mathcal{H} = \operatorname*{argmax}_{\mathcal{H}_1,\mathcal{H}_1^c \in \mathcal{C}_c} \mu_{\mathcal{H}_1,\mathcal{H}_1^c}(\mathcal{A},\mathcal{B})$$

Given a monotone linkage closure system (E, C, I) and two sets $A, B \subseteq E$, find a half-space H which **maximizes** the margin, i.e.

$$\mathcal{H} = \operatorname*{argmax}_{\mathcal{H}_1,\mathcal{H}_1^c \in \mathcal{C}_c} \mu_{\mathcal{H}_1,\mathcal{H}_1^c}(\mathcal{A},\mathcal{B})$$

Given a monotone linkage closure system (E, C, I) and two sets $A, B \subseteq E$, find a half-space H which **maximizes** the margin, i.e.

$$\mathcal{H} = \operatorname*{argmax}_{\mathcal{H}_1,\mathcal{H}_1^c \in \mathcal{C}_c} \mu_{\mathcal{H}_1,\mathcal{H}_1^c}(\mathcal{A},\mathcal{B})$$

Given a monotone linkage closure system (E, C, I) and two sets $A, B \subseteq E$, find a half-space H which **maximizes** the margin, i.e.

$$\mathcal{H} = \operatorname*{argmax}_{\mathcal{H}_1,\mathcal{H}_1^c \in \mathcal{C}_c} \mu_{\mathcal{H}_1,\mathcal{H}_1^c}(\mathcal{A},\mathcal{B})$$

Solutions:

Solutions:

1 restrict to Kakutani closure systems (e.g. trees, distributive lattices)

Kakutani closure system:

All disjoint closed sets are half-space separable.

Solutions:

- restrict to Kakutani closure systems (e.g. trees, distributive lattices)
- 2 relax the problem to maximal disjoint closed sets

Kakutani closure system:

All disjoint closed sets are half-space separable.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

Maximum-Margin Closed Set Separation Problem:

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

requires only the ground set the closure operator and the linkage function

Maximum-Margin Closed Set Separation Problem:

Given non-empty subsets *A*, *B* of *E*, *find* disjoint closed sets $C_A, C_B \in C_c$ with $A \subseteq C_A, B \subseteq C_B$ that **maximize** the margin if $c(A) \cap c(B) = \emptyset$; o/w return "No".

Result: Very efficient algorithm.

requires only the ground set the closure operator and the linkage function

Theorem: The algorithm solves the Maximum Margin Closed Set Separation problem by calling the closure operator at most 2|E| - 2 times and the linkage function at most 2|E| times. **Theorem:** The algorithm solves the Maximum Margin Closed Set Separation problem by calling the closure operator at most 2|E| - 2 times and the linkage function at most 2|E| times.

Corollary: The algorithm solves the Maximum Margin Half-Space Separation Problem if the closure system is Kakutani.

Experiments (Finite Point Sets)

(Vapnik, 1992)

Greedy Algorithm

(ECML/PKDD 2019)

Maximum Margin Algorithm (this work)

Experiments (Finite Point Sets)

svm: (Vapnik, 1992), greedy: (ECML/PDKK 2019), max margin: (this work)

Maximum Half-Space separation on trees

Maximum closed set separation on small graphs

• Maximum margin concept **differs** from that in \mathbb{R}^d

- Maximum margin concept **differs** from that in \mathbb{R}^d
 - equivalence of maximum margin definition does not hold

- Maximum margin concept **differs** from that in \mathbb{R}^d
 - equivalence of maximum margin definition does not hold
 - maximum margin separation is not unique

- Maximum margin concept differs from that in R^d
 - equivalence of maximum margin definition does not hold
 - maximum margin separation is not unique
- no specific structure is utilized (e.g. metric, vector space)

- Maximum margin concept differs from that in R^d
 - equivalence of maximum margin definition does not hold
 - maximum margin separation is not unique
- no specific structure is utilized (e.g. metric, vector space)
- monotone linkage function provide great generality

- Maximum margin concept differs from that in R^d
 - equivalence of maximum margin definition does not hold
 - maximum margin separation is not unique
- **no** specific structure is utilized (e.g. metric, vector space)
- monotone linkage function provide great generality
- Maximum Margin Half-Space Separation is in *P* for Kakutani closure systems (e.g. trees, distributive lattices)

- Maximum margin concept differs from that in R^d
 - equivalence of maximum margin definition does not hold
 - maximum margin separation is not unique
- **no** specific structure is utilized (e.g. metric, vector space)
- monotone linkage function provide great generality
- Maximum Margin Half-Space Separation is in *P* for Kakutani closure systems (e.g. trees, distributive lattices)
- Maximum Margin Closed Set Separation is efficient solvable

- Maximum margin concept differs from that in R^d
 - equivalence of maximum margin definition does not hold
 - maximum margin separation is not unique
- **no** specific structure is utilized (e.g. metric, vector space)
- monotone linkage function provide great generality
- Maximum Margin Half-Space Separation is in *P* for Kakutani closure systems (e.g. trees, distributive lattices)
- Maximum Margin Closed Set Separation is efficient solvable
 - outperforms simple greedy algorithm (ECML/PKDD, 2019)

• further applications to the special case of (distributive) lattices

- further applications to the special case of (distributive) lattices
- studying uniqueness conditions for maximum margin half-space separation

- further applications to the special case of (distributive) lattices
- studying uniqueness conditions for maximum margin half-space separation
- reduce complexity of the algorithm for known closure systems (e.g. trees, lattices,...)

- further applications to the special case of (distributive) lattices
- studying uniqueness conditions for maximum margin half-space separation
- reduce complexity of the algorithm for known closure systems (e.g. trees, lattices,...)
- allow approximate/fuzzy solutions

Further Details

Come to the Question and Answer Session or contact me:

Florian Seiffarth University of Bonn seiffarth@cs.uni-bonn.de