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Abstract Frequent subgraphs proved to be powerful features for graph classifica-
tion and prediction tasks. Their practical use is, however, limited by the compu-
tational intractability of pattern enumeration and that of graph embedding into
frequent subgraph feature spaces. We propose a simple probabilistic technique that
resolves both limitations. In particular, we restrict the pattern language to trees
and relax the demand on the completeness of the mining algorithm, as well as
on the correctness of the pattern matching operator by replacing transaction and
query graphs with small random samples of their spanning trees. In this way we
consider only a random subset of frequent subtrees, called probabilistic frequent
subtrees, that can be enumerated efficiently. Our extensive empirical evaluation
on artificial and benchmark molecular graph datasets shows that probabilistic fre-
quent subtrees can be listed in practically feasible time and that their predictive
and retrieval performance is very close even to those of complete sets of frequent
subgraphs. We also present different fast techniques for computing the embedding
of unseen graphs into (probabilistic frequent) subtree feature spaces. These algo-
rithms utilize the partial order on tree patterns induced by subgraph isomorphism
and, as we show empirically, require much less evaluations of subtree isomorphism
than the standard brute-force algorithm. We also consider partial embeddings, i.e.,
when only a part of the feature vector has to be calculated. In particular, we pro-
pose a highly effective practical algorithm that significantly reduces the number
of pattern matching evaluations required by the classical min-hashing algorithm
approximating Jaccard-similarities.
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1 Introduction

A common paradigm in distance-based learning is to embed the instance space
into some appropriately chosen feature space equipped with a metric and to de-
fine the dissimilarity between instances by the distance of their images in the
feature space. In this work we deal with the special case that the instances are
arbitrary (labeled) graphs and the feature space is the d-dimensional Hamming

space (i.e., {0, 1}d) spanned by the elements of a pattern set of cardinality d for
some d > 0. The crucial step of this generic approach is the appropriate choice of
the pattern (or feature) set. Indeed, the quality (e.g., predictive performance) of
this method applied to some particular problem strongly depends on the seman-
tic relevance of the patterns considered, implying that one might be interested in
pattern languages of high expressive power. Our goal in this paper is to use fre-

quent subgraphs as features, without any structural restriction on the graph class
defining the instance space. This is motivated, among others, by the observation
that frequent subgraph based learners (see, e.g., Deshpande et al, 2005) are of re-
markable predictive performance for example on the ligand-based virtual screening
problem (Geppert et al, 2008).

Our goal involves two steps solving the following computational problems:

(i) Pattern mining: Given a (training) database of arbitrary graphs, compute the
set F of all frequent subgraphs with respect to some user specified frequency
threshold.

(ii) Graph embedding: Given an unseen graph (usually drawn from the same dis-
tribution as the training data set), compute its embedding into the Hamming
space spanned by the elements of F .

For the case that the embedding operator is defined by subgraph isomorphism and
that there is no restriction on the transaction and query graphs, both steps are
computationally intractable. The pattern mining problem (i) has gained lots of
attention (see, e.g., Deshpande et al, 2005; Nijssen and Kok, 2005; Chi et al, 2005;
Zhao and Yu, 2008), resulting in several practical systems for graph databases
restricted in different ways. The graph embedding problem (ii) is, however, often
neglected in the literature, though it is crucial to the ability of applying the pattern
set generated in the first step.

To arrive at a practically fast system, we restrict the pattern language to trees.
This restriction alone, however, does not resolve the complexity problems above.
Regarding problem (i), mining frequent subtrees from arbitrary graphs is not pos-
sible in output polynomial time (unless P=NP, Horváth et al, 2007). Regarding
problem (ii), deciding subgraph isomorphism from a tree into a graph is NP-
complete (Garey and Johnson, 1979), implying that computing the embedding
of arbitrary graphs into feature spaces spanned by tree patterns is computation-
ally intractable. To overcome these limitations, we give up the demand on the
completeness of the mining algorithm and that on the correctness of the pattern
matching operator (i.e., subgraph isomorphism).

Regarding the mining algorithm, for each training graph in the mining step
we first take a set of k spanning trees generated uniformly at random, where k

is some user specified parameter, and replace each training graph with a random
forest obtained by the vertex disjoint union of its k random spanning trees. We then
calculate the set of frequent subtrees for this forest database for some user specified
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frequency threshold. Clearly, the output of this probabilistic technique is always
sound (any tree found to be frequent by this algorithm is a frequent subtree in
the original dataset), but incomplete (the algorithm may miss frequent subtrees).
Since frequent subtrees in forests can be generated with polynomial delay (see,
e.g., Horváth and Ramon, 2010), our frequent pattern generation algorithm runs
in time polynomial in the combined size of the training dataset D and the set of
frequent subtrees generated, as long as k is bounded by a polynomial of the size of
D. Our extensive empirical evaluation demonstrates that the above idea results in
a practically feasible mining algorithm. In particular, we show that the recall, i.e.,
the fraction of frequent patterns retrieved by our probabilistic mining technique is
high even for small values of k and that the retrieved set of patterns is very stable.
(Notice that precision is always 100% for the soundness of the algorithm.)

We follow a similar strategy for the pattern matching operator used in the
embedding step: For an unseen graph G and a set F of tree patterns enumerated
in the mining step, we generate a set Sk(G) of k random spanning trees of G and
compute the set of all T ∈ F that are subgraph isomorphic to Sk(G). The incidence
vector of this set defines the embedding of G into the Hamming space spanned by
F . On the one hand, in this way we decide subgraph isomorphism from a tree into
a graph with one-sided error, as only a negative answer may be erroneous, i.e.,
when T is subgraph isomorphic to G, but not to Sk(G). On the other hand, this
probabilistic pattern matching test can be performed in polynomial time (Shamir
and Tsur, 1999), in contrast to the correct pattern evaluation. We show that our
probabilistic algorithm decides subgraph isomorphism from T into G correctly with
high probability if T is frequent in G and k is chosen appropriately.

Using the probabilistic technique sketched above, we can compute the embed-
ding of a graph in polynomial time by deciding subgraph isomorphism for all trees
in the pattern set. This brute-force algorithm can be accelerated by reducing the
number of subgraph isomorphism tests. Utilizing that subgraph isomorphism in-
duces a partial order on the pattern set and that it is anti-monotone with respect
to this order, we can infer for certain patterns whether or not they match a graph
from the evaluations already performed for other patterns. We propose two such
strategies. One is based on a greedy depth-first search traversal, the other uses binary

search on paths in the pattern poset. We show empirically that both algorithms
drastically reduce the number of embedding operator evaluations compared to the
baseline obtained by levelwise search.

The high dimensionality of the resulting feature space often still results in prac-
tically infeasible time and space complexity for distance-based learning methods.
Time and space can, however, be significantly reduced by using min-hashing (Broder,
1997), an elegant and powerful probabilistic technique for the approximation of
Jaccard-similarity. For the feature set formed by the set of all paths up to a con-

stant length, min-hashing has already been applied to graph similarity estimation
by performing the embedding explicitly (Teixeira et al, 2012). We show for the
more general case of tree patterns of arbitrary size that the min-hash sketch of a
given graph can be computed without calculating the embedding explicitly. We
utilize the fact that we are interested in the first occurrence of a pattern in some
permutation of the pattern set; once we have found it, we can stop the calculation,
as all patterns after it are irrelevant for min-hashing. Beside this straightforward
speed-up of the algorithm, the computation of the min-hash sketch can further be
accelerated by utilizing once more the anti-monotonicity of subgraph isomorphism
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on the pattern set. These facts allow us to define a linear order on the patterns to
be evaluated and to avoid redundant subtree isomorphism tests.

The experimental results presented in Section 5 clearly demonstrate that us-
ing our technique, the number of subtree isomorphism tests can dramatically be
reduced with respect to the min-hash algorithm performing the embedding ex-
plicitly. It is natural to ask how the predictive performance of the approximate
similarities compares to the exact ones. We show for molecular benchmark graph
datasets that even for a few random spanning trees per chemical compound, re-
markable precisions of the active molecules can be obtained by taking the k nearest
neighbors of an active compound for k = 1, . . . , 100 and that these precision val-
ues are close to those obtained by the full set of frequent subtrees. In a second
experimental setting, we analyze the predictive power of support vector machines
using our approximate similarities and show that it compares to that of state-of-
the-art related methods. The stability of our incomplete probabilistic technique is
explained by the fact that a subtree generated by our method is frequent not only
with respect to the training set, but, with high probability, also with respect to
the set of spanning trees of a graph.

Parts of this paper have already been published in (Welke et al, 2016b) and
(Welke et al, 2016a). In particular, our probabilistic subtree mining method al-
ready appeared in (Welke et al, 2016b) while the min-hash sketch computation
was presented in (Welke et al, 2016a). In addition to the results of these two
papers we propose two novel algorithms to efficiently compute the full feature
embeddings of arbitrary graphs with respect to a set of tree patterns. Using the
anti-monotonicity of the pattern matching operator on the pattern poset, these
novel algorithms significantly accelerate the computation of the complete embed-
ding vector in practice.

The rest of the paper is organized as follows: We introduce the necessary no-
tions and fix the notation in Section 2. Our probabilistic frequent subtree mining
algorithm is presented in Section 3. The problem of embedding unseen graphs into
(probabilistic frequent) subtree feature spaces is studied in Section 4. We report
extensive experimental results with the proposed probabilistic technique in Sec-
tion 5. Finally, in Section 6 we conclude and mention some interesting directions
for further research.

2 Notions

In this section we collect the necessary notions and fix the notation. The set
{1, . . . , n} will be denoted by [n] for all n ∈ N. The following basic concepts from
graph theory are standard (see, e.g., Diestel, 2012). An undirected (resp. directed)
graph G is a pair (V,E), where V (the vertex set) is a finite set and E (the edge set)
is a subset of the family of 2-subsets of V (resp. E ⊆ V × V ). The set of vertices
(resp. edges) of a graph G is denoted by V (G) (resp. E(G)). When G is clear from
the context, n (resp. m) denotes |V (G)| (resp. |E(G)|). Unless otherwise stated, by
graphs we mean undirected graphs. A forest is a graph that contains no cycle; an
unrooted (or free) tree is a connected forest. A subgraph H of G is a graph with
V (H) ⊆ V (G) and E(H) ⊆ E(G). A spanning tree T of a connected graph G is
a subgraph of G with V (T ) = V (G) that is a tree. For simplicity, we restrict the
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description of our method to unlabeled connected graphs and discuss in Section 6
how our results can be generalized to disconnected graphs.

Among the classical pattern embedding (or matching) operators, subgraph iso-
morphism is the most widely used one in frequent pattern mining. For this reason,
in the next section we will present our method also for subgraph isomorphism. Let
G1 = (V1, E1) and G2 = (V2, E2) be undirected graphs. They are isomorphic if there
exists a bijection ϕ : V1 → V2 with {u, v} ∈ E1 if and only if {ϕ(u), ϕ(v)} ∈ E2

for all u, v ∈ V1. G1 is subgraph isomorphic to G2, denoted G1 4 G2, if G2 has a
subgraph that is isomorphic to G1; G1 ≺ G2 denotes that G1 4 G2 and G1 is not
isomorphic to G2. It is a well-known fact that the subgraph isomorphism problem
is NP-complete. This negative result holds even for the case that the patterns are
restricted to trees.

For any finite graph class F containing no two isomorphic graphs, (F ,4) is a
partially ordered set (or poset). Since F is finite, (F ,4) can be represented by a
directed acyclic graph (F , E) with (T1, T2) ∈ E if and only if T1 ≺ T2 and there is no
T ∈ F with T1 ≺ T ≺ T2 for all T1, T2 ∈ F . We will make use of the fact that any
directed acyclic graph has at least one topological order. In particular, a topological

order on (F , E) is a total order (F ,@) on F satisfying the following property: For
all T1, T2 ∈ F , T1 @ T2 whenever (T1, T2) ∈ E (or equivalently, T1 4 T2).

A common way of defining the similarity between two graphs is to take the
Jaccard-similarity of their images in the Hamming-cube {0, 1}|F| spanned by the
elements of some finite feature set F . The binary feature vectors can then be
regarded as the incidence vectors of subsets of F . Given two binary feature vectors
f1 and f2 representing the sets S1 and S2, respectively, their Jaccard-similarity is
defined by

SimJaccard(f1, f2) := SimJaccard(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

with SimJaccard(∅, ∅) := 0 for the degenerate case. As long as the feature vectors
are low dimensional (i.e., |F| is small), the Jaccard-similarity can quickly be cal-
culated. If, however, they are high dimensional, it can be approximated with the
following fast probabilistic technique based on min-hashing (Broder, 1997): For a
permutation π of F and feature vector f , define hπ(f) to be the index of the first
entry with value 1 in the permuted order of f . One can show that the following
correspondence holds for the feature vectors f1 and f2 above (see Broder, 1997,
for the details):

SimJaccard(S1, S2) = Pr [hπ(f1) = hπ(f2)] ,

where the probability is taken by selecting π uniformly at random from the set of
all permutations of F . This allows for the following approximation of the Jaccard-
similarity between f1 and f2: Generate a set π1, . . . , πK of permutations of the
feature set uniformly and independently at random and return K′/K, where K′ is
the number of permutations πi with hπi(f1) = hπi(f2). The approximation of the
Jaccard-similarity with min-hashing results in a fast algorithm if the embedding
into the feature space can be computed quickly.
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Algorithm 1 Probabilistic Frequent Subtree Mining

input: graph database D ⊆ G, frequency threshold θ ∈ (0, 1], and k > 0 integer

output: a random subset of the set of frequent subtrees of D
1: D′ := ∅
2: for all G ∈ D do
3: sample k spanning trees of G uniformly at random
4: add the forest Sk(G) of those trees to D′

5: list all subtrees with frequency at least θ in D′

3 Mining Probabilistic Frequent Subtrees

In this section we define probabilistic frequent subtree feature spaces, i.e., feature
spaces spanned by certain random subsets of frequent subtrees, and discuss some
of their computational aspects. In the next section we present fast methods for
computing total and partial embeddings of graphs into probabilistic frequent sub-
tree feature spaces. As mentioned earlier, we consider only Hamming (or binary)
feature spaces, i.e., the underlying instance space is mapped to the vertices of
the d-dimensional unit hypercube, where d is the cardinality of the feature set
considered.

To arrive at the definition, consider first the exact frequent subtree feature
space spanned by all frequent subtrees of a graph dataset. Working with such
feature spaces raises the following two computational problems:

(P1) The Frequent Subtree Mining Problem: Given a finite set D of graphs
and a frequency threshold θ ∈ (0, 1], generate the set F of frequent trees, i.e.,
all trees T with |{G ∈ D : T 4 G}|/|D| ≥ θ.

(P2) The Subtree Isomorphism Problem: Given a tree T and a graph G, decide

whether or not T 4 G.

The second problem appears in the support counting step of all algorithms solving
(P1) with the generate-and-test paradigm. It is also essential to the step of com-
puting the embedding of unseen graphs into the Hamming feature space spanned
by F . Since we have no restrictions on D and G, both problems above are computa-
tionally intractable. In particular, unless P = NP, (P1) cannot be solved in output
polynomial time (Horváth et al, 2007) and (P2) is NP-complete. To overcome
these limitations, we give up the demand on the completeness of (P1) and that on
the correctness of the subtree isomorphism test for (P2), resulting in practically
effective algorithms.

Regarding the relaxation of (P1), for each graph G ∈ D we consider a for-
est Sk(G) formed by the vertex disjoint union of k random spanning trees of G
and solve (P1) for the forest database obtained (cf. Algorithm 1). The Hamming
feature space spanned by the output patterns will be referred to as probabilistic

frequent subtree (PFS) feature space. In this way, we effectively reduce the prob-
lem of mining frequent subtrees in arbitrary graphs to that in forests. In contrast
to the computational intractability of (P1), this relaxed problem can be solved
with polynomial delay (see, e.g., Chi et al, 2005; Horváth and Ramon, 2010). In
addition to D and θ in problem (P1), the input contains an additional parameter
k ∈ N as well (cf. Algorithm 1). It specifies the upper bound on the number of
spanning trees to be generated for the transaction graphs. Clearly, for any D, θ,
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and k, Algorithm 1 is sound, i.e, its output is always a subset of the set of fre-
quent trees in D. However, it will not necessarily find all frequent patterns, i.e.,
it is incomplete in general. Thus, on the one hand we obtain a polynomial delay
mining algorithm that is fast for small values of k, on the other hand, however, we
disregard frequent patterns. Another advantage of our technique is that it assumes
neither explicitly nor implicitly any structural restriction on the input graphs. A
probabilistic justification of this approach together with an appropriate choice of
k is given below. As we empirically demonstrate in Section 5 on various datasets,
the predictive and retrieval power of probabilistic frequent subtree features are
very close to those of exact ones.

Regarding the relaxation of (P2), we allow the algorithm deciding subgraph
isomorphism to be incorrect by using a similar probabilistic approach as above.
More precisely, for a tree T and a graph G, we generate a random forest Sk(G)
as in Algorithm 1 and regard T as a subtree of G if T 4 Sk(G). In what follows,
the relation T 4 Sk(G) will be referred to as T probabilistically matches G. Clearly,
T is subgraph isomorphic to G whenever it probabilistically matches G; otherwise
T may or may not be subgraph isomorphic to G. Thus, we decide subtree isomor-
phism with one-sided error. Note that the relaxation on (P2) is used only for the
embedding of unseen graphs, as the relaxation on (P1) implies that we have to
calculate the support count of a tree in a database of forest transactions, which
can be done in polynomial time.

In the application of probabilistic frequent subtrees, the incompleteness of Al-
gorithm 1 and the incorrectness of the probabilistic embedding sketched above
raise two important questions:

1. How stable is the output of Algorithm 1 and what is its recall with respect to
all frequent subtrees? (Note that precision is always 1 for the soundness of the
algorithm.)

2. How good is the predictive performance of probabilistic frequent subtrees?

Regarding the first question, we show in Section 5 on artificial and real-world
chemical graph datasets that (i) the output is very stable even for k = 1 and (ii)
more than 75% of the frequent patterns can be recovered by using only k = 10
random spanning trees per graph. The high stability and recall results together
indicate that the probabilistic embedding of G calculated by the above method
has a small Hamming distance to the exact one defined by the set of all frequent
subtrees.

Regarding the second question above, we experimentally show in Section 5
on different real-world benchmark chemical graph datasets that the predictive
performance of our probabilistic approach is comparable to those obtained by the
FSG algorithm (Deshpande et al, 2005), using correct embedding. This holds not
only for the set of all frequent trees, but also for the full set of frequent subgraphs.

3.1 µ-Important Subtrees

The rationale behind our probabilistic technique is as follows. For a graph G, let
S(G) be the set of all spanning trees of G. For the remainder of this section, we
will regard Sk(G) as a set of k spanning trees of G. Note that this is equivalent
to considering it as a forest in the following sense: There exists a spanning tree
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Fig. 1: The function 1− (1− µ)k for different values of k.

S ∈ Sk(G) (as a set) such that H 4 S if and only if H 4 Sk(G) (as a forest).
Using these notions, a tree T is µ-important in G if

|{S ∈ S(G) : T 4 S}|
|S(G)|

≥ µ .

Thus, the probability that a µ-important tree in G is subtree isomorphic to a
spanning tree of G generated uniformly at random is at least µ. Notice that µ = 1
for any subtree of the forest formed by the set of bridges of G (i.e., by the edges that
do not belong to any cycle in G). Let Sk(G) denote a sample of k spanning trees of
G generated independently and uniformly at random and let T be a µ-important
tree in G. Then

Pr [∃S ∈ Sk(G) such that T 4 S] ≥ 1− (1− µ)k . (1)

The bound in (1) implies that for any graph G and µ-important tree pattern T in
G for some µ ∈ (0, 1], and for any δ ∈ (0, 1),

Pr [∃S ∈ Sk(G) such that T 4 S] ≥ 1− δ (2)

whenever

k ≥ 1

µ
ln

1

δ
, (3)

where (3) is obtained from (1) and (2) by the inequality 1 − x ≤ e−x. (See, also,
Figure 1 for the function 1 − (1 − µ)k for different values of k). Thus, if k is ap-
propriately chosen, we have a probabilistic guarantee in terms of the confidence
parameter δ that all µ-important tree patterns will be considered with high prob-
ability. Putting the three facts above together, we have the following claim:

Proposition 1 For any graph G, let T be a µ-important tree in G for some µ ∈ (0, 1]
and let δ ∈ (0, 1). Then for any k ≥ 1

µ ln 1
δ ,

Pr [T 4 Sk(G)] ≥ 1− δ .

As an example, 20 random spanning trees suffice to correctly process a 0.15-
important tree pattern with probability 0.95. Clearly, a smaller value of µ results
in a larger feature set.
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3.2 Implementation Issues and Runtime Analysis

Line 3 of Algorithm 1 can be implemented using the algorithm of Wilson (1996),
which has an expected runtime of O

(
n3
)

in the worst case, where n is the number of
vertices in G. In fact, it is conjectured to be much smaller for most graphs (Wilson,
1996). Thus, the sampling step of our algorithm runs in expected O

(
kn3

)
time. If

we do not require the spanning trees to be drawn uniformly, we can improve on this
time and achieve a deterministic O (km log n) runtime, where m denotes the num-
ber of edges in G. This is achieved by choosing a random permutation of the edge
set of a graph and then applying Kruskal’s minimum spanning tree algorithm using
this edge order. It is not difficult to see that this technique can generate random
spanning trees with non-uniform probability. Each spanning tree has, however,
a nonzero probability of being selected in this way. As our experimental results
on molecular graphs of pharmacological compounds show, non-uniformity has no
significant impact on the predictive performance of the graph kernel obtained.

For a practical improvement of the runtime of our algorithm, we note that
some spanning trees in Sk(G) might be redundant: Since isomorphic spanning
trees yield the same subtrees, it suffices to keep only one spanning tree from each
equivalence class. The set of all sampled spanning trees in Sk(G) up to isomorphism

can be computed from Sk(G) using some canonical string representation for trees
and a prefix tree as data structure (see, e.g., Chi et al, 2005, for more details
on canonical string representations for trees). For each tree, this can be done in
O (n log n) time by computing first the tree center and then applying a canonical
string algorithm for rooted trees as in (Chi et al, 2005). These canonical strings
are then stored in and retrieved from a prefix tree in time linear in their size. We
implemented this method as an extension of Line 4.

Finally we note that for Line 5, we can use almost any one of the existing
algorithms generating frequent connected subgraphs (i.e., subtrees) from forest
databases (see, e.g., Chi et al, 2005, for an overview on this topic). We recall
that most practical systems actually do not guarantee polynomial delay (or even
output polynomial time).

4 Embeddings into Subtree Feature Spaces

Typical applications of feature spaces for learning and information retrieval tasks
rely on calculating some similarity measure between points in the underlying fea-
ture space. Many of such algorithms require the input data to be embedded into the
feature space explicitly. In this section we consider explicit embeddings into Ham-
ming feature spaces spanned by tree patterns. Thus, the results of this section can
naturally be applied to the case of PFS feature spaces as well. We distinguish two
scenarios. The first one is when the feature vector of a graph G must be computed
completely, i.e., for all tree patterns T in the feature set it must be decided whether
T 4 G, or not. The second one is when it suffices to compute the feature vector
partially. For the latter scenario we have a particular interest in the application of
the min-hashing algorithm (Broder, 1997) to PFS feature spaces. This algorithm
computes arbitrary close approximations of the Jaccard-similarity between two bi-
nary vectors (or equivalently, between two sets). The Jaccard-similarity is a widely
used measure applied among others in information retrieval, kernel methods, clus-
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tering, etc. Our motivation of considering the Jaccard-similarity is that it has been
applied successfully also in graph mining (see, e.g., Teixeira et al, 2012).

For both scenarios we present algorithms that significantly reduce the num-
ber of pattern matching evaluations over the standard brute-force algorithms and
hence accelerate the speed of explicit embeddings. We utilize the fact that sub-
graph isomorphism induces a (natural) partial order on trees. In Section 4.1 we
first discuss complete embeddings and then, in Section 4.2, partial embeddings for
min-hashing in subtree feature spaces.

4.1 Complete Embeddings into Subtree Feature Spaces

In this section we deal with the problem of computing complete embeddings into
Hamming feature spaces spanned by tree patterns. The algorithms presented can
be applied to the special case of probabilistic frequent subtrees as well. More
precisely, we consider the following problem:

(P3) Exact Embedding into Subtree Feature Spaces: Given a set F of tree
patterns and a graph G, compute the incidence vector f of the set {T ∈ F :
T 4 G}.

We regard F as the poset (F ,4) and assume without loss of generality that the
empty tree ⊥ is an element of F and that F is closed under taking subgraphs mod-
ulo isomorphism. We also assume that the poset (F ,4) is provided as a directed
acyclic graph F = (F , E) such that for all T1, T2 ∈ F holds (T1, T2) ∈ E if and only
if |V (T2)| = |V (T1)|+ 1, and T1 4 T2.

Clearly, (P3) is NP-complete. Therefore, we relax it in a way similar to the
relaxation of (P2) in the previous section and approximate the incidence vector f

of {T ∈ F : T 4 G} by the incidence vector f ′ of {T ∈ F : T 4 Sk(G)}. While
this relaxation makes (P3) computationally tractable, each invocation of the prob-
abilistic matching operator adds a non-negligible amount of work of complexity
O
(
kn2.5/ log n

)
, corresponding to the complexity of subgraph isomorphism from

trees into forests (Shamir and Tsur, 1999). This super-quadratic complexity mo-
tivates us to minimize the number of calls of the probabilistic matching operator
while computing f ′. We present three algorithms for computing f ′ that significantly
reduce the number of probabilistic pattern matching evaluations in practice with
respect to the brute-force algorithm calling this operator |F|-times. We note that
all three methods can be applied without any change to other embedding opera-
tors as well, as long as they are anti-monotone with respect to the partial order
induced on F .

Notice that computing f ′ for G is equivalent1 to computing all frequent subtrees
of the graph database D = {G} for frequency threshold 1, where the pattern
language is restricted to F . As a baseline approach we generate the set of matching
patterns with levelwise search (Mannila and Toivonen, 1997), i.e., with breadth-first
search traversal of F starting at ⊥ and pruning by utilizing the anti-monotonicity
of the embedding operator on (F ,4). This algorithm, referred to as Levelwise,
evaluates the probabilistic pattern matching operator exactly for all patterns that
probabilistically match G and for all patterns in the negative border, i.e., which
do not probabilistically match G, but all of their subgraphs in F do.

1 In the sense that there exist polynomial time reductions between the two problems.
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Levelwise is optimal in the sense that it evaluates only those non-matching
patterns that are in the negative border (Mannila and Toivonen, 1997). However,
one call to the embedding operator is required for each matching pattern. As F
is given explicitly, we can reduce this number by leveraging the anti-monotonicity
of the embedding operator downwards as well: If a pattern T matches G all of its
subgraphs match G as well and therefore need not be evaluated explicitly. Note
that the number of such subgraphs can be exponential in the size of T . In F ,
there is a directed path from each such pattern to T . Hence, a traversal strategy
that visits large patterns before the evaluation of all of their subgraphs can reduce
the number of calls to the embedding operator. This idea can be implemented in
several ways; we will present two different such traversal strategies.

We first consider a simple greedy search instead of the levelwise traversal of F ,
that already works quite well in practice, as we will see in Section 5.2. It reduces
the number of embedding operator evaluations on matching patterns by traversing
the supergraphs of a matching pattern before the evaluation of their subgraphs.
However, it might evaluate non-matching patterns as well that are beyond the
negative border. Our experiments indicate that the number of matches that are
not explicitly evaluated usually outweighs that of non-matching patterns beyond
the negative border that are evaluated by the greedy search.

Our implementation of this greedy strategy, called Greedy, is depicted in Al-
gorithm 2. The algorithm iterates through every pattern from small to large and
starts a depth-first search (DFS) traversal on each pattern for which the outcome
of the embedding operator is yet unknown and backtracks once a non-matching
pattern is found. While Greedy is running, it updates the state of patterns ac-
cording to the anti-monotonicity of subgraph isomorphism. It encodes the value of
the embedding operator on a pattern in a ternary state variable, which can take
the values match, noMatch, and unknown. Due to the fact that we mark subgraphs
of matching patterns as matches, it will likely happen that the state of some or all
direct supergraphs of a pattern is already known during backtracking. However,
the state of some other (larger) supergraphs might still be unknown. Hence a single
invocation of a DFS starting at ⊥ would not suffice to guarantee that every pat-
tern has been visited. Note that the state of each pattern changes from unknown

to either match (Line 10) or noMatch (Line 12) whenever the embedding operator
is evaluated in Line 8. Due to Line 7 this means that the operator is evaluated
at most once for each pattern. The remaining runtime of Greedy is bounded by
O (|E(F )|): The recursion on the edges only happens when the embedding opera-
tor is evaluated on a pattern, which can happen only once as we have seen above.
Second, Lines 10 and 12 can be implemented by a BFS or DFS that only traverses
patterns in F (respectively the reverse graph of F ) whose state is unknown.

As a second idea to use anti-monotonicity for pruning non-matching patterns
as well as matching patterns, we propose BinarySearch described in Algorithm 3.
The algorithm iteratively searches longest paths in the part of the directed graph
F for which the value of the embedding operator is still unknown. Such a directed
path P in F corresponds to a chain in the partial order (F ,4). Due to the anti-
monotonicity of the embedding operator for a fixed graph G there are three cases:
(1) All patterns in P match G, (2) no patterns in P match G, or (3) there is a
unique pattern T in P whose descendants in P all match and whose successors in
P all do not match G. BinarySearch regards such a path P in F as an array and
searches T in O (log |V (P )|) time, all the while maintaining the deducible state of
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Algorithm 2 Greedy

Input: A graph G and a directed graph F = (F , E) representing the poset (F ,4)
Output: {T ∈ F : T 4 Sk(G)}

1: set state[T ] := unknown for all T ∈ F
2: fix Sk(G)
3: for T ∈ F in a topological order do
4: DFS(Sk(G), T, state, F )

5: return {T ∈ F : state[T ] = match}

6: procedure DFS(Sk(G), T, state, F )
7: if state[T ] = unknown then
8: if T 4 Sk(G) then
9: for (T, T ′) ∈ N (T ) do DFS(Sk(G), T ′, state, F )

10: set state[T ′] = match for all T ′ that can reach T in F .
11: else
12: set state[T ′] = noMatch for all T ′ reachable from T in F .

Algorithm 3 BinarySearch

Input: A graph G and a directed graph F = (F , E) representing the poset (F ,4)
Output: {T ∈ F : T 4 Sk(G)}

1: set state[T ] := unknown for all T ∈ F
2: fix Sk(G)
3: for T ∈ F in a topological order do
4: if state[T ] = unknown then
5: let P be a longest path in F starting at T such that

∀T ′ ∈ V (P ) state[T ′] = unknown
6: BinarySearch(Sk(G), P, state, F )

7: return {T ∈ F : state[T ] = match}

8: procedure BinarySearch(Sk(G), P, state, F )
9: min := 1

10: max := length(P )
11: while min ≤ max do
12: let i := b(min+max)/2c
13: let T := P [i]
14: if state[T ] = unknown then
15: if T 4 Sk(G) then
16: set state[T ′] = match for all T ′ that can reach T in F .
17: else
18: set state[T ′] = noMatch for all T ′ reachable from T in F .

19: if state[T ] = match then
20: min := i+ 1
21: else
22: max := i− 1

the patterns in F . It is noteworthy that long paths are beneficial for the runtime
of this algorithm, as the difference between log x and x increases with growing x.

Using similar arguments as in the discussion of Algorithm 2 above, one can
show that Algorithm 3 is correct and evaluates the matching operator at most once
for each tree pattern. A longest path starting at a given pattern in the part of F
where the state of patterns is unknown can be implemented by a DFS. However,
in contrast to the traversal of F to maintain the state, there is no guarantee
that a given edge is traversed at most once and in total no better bound than
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O
(
|E(F )|2 + |V (F )| · f(G)

)
can be given for the runtime of Algorithm 3. During

our empirical evaluation, however, we saw that the runtime of BinarySearch was
still dominated by the calls to the matching operator.

4.2 Min-Hashing in Subtree Feature Spaces

In this section we discuss another application of probabilistic frequent subtrees
by considering the problem of computing the Jaccard-similarity between feature
vectors in the Hamming space spanned by probabilistic frequent subtrees. The
Jaccard-similarity (often also called Tanimoto kernel) is a well-established and
commonly used similarity measure in subgraph feature spaces (see, e.g., Teixeira
et al, 2012; Gärtner et al, 2003). Despite the redundancies among the subgraph
features it has a number of successful practical applications (see, e.g., Willett,
2006, for its application in computational chemistry). More precisely, we consider
the following problem:

(P4) The Jaccard-Similarity Problem: Given a set F of probabilistic frequent
subtrees and two graphs G1, G2 with random forests Sk(G1),Sk(G2), respec-
tively, compute the Jaccard-similarity

SimJaccard(f1, f2) ,

where f i is the incidence vector of the set of trees in F that are subgraph
isomorphic to Sk(Gi) (i = 1, 2).

Instead of using the naive brute-force algorithm, i.e., performing first the explicit
embeddings of Sk(G1) and Sk(G2) into the Hamming space spanned by F and cal-
culating then the exact value of SimJaccard(f1, f2), we follow Broder’s probabilistic
min-hashing technique (Broder, 1997) sketched in Section 2. Though the descrip-
tion below is restricted to tree shaped patterns, the approach can naturally be
adapted to any partially ordered pattern language and anti-monotone embedding
operator.

Min-hashing was originally applied to text documents using q-shingles as fea-
tures (i.e., sequences of q contiguous tokens for some q ∈ N), implying that one
can calculate the explicit embedding in linear time by shifting a window of size q
through the document to be embedded. In contrast, a naive algorithm embedding
the forest Sk(G) generated for a graph of size n into the Hamming space spanned
by F would require O

(
|F|kn2.5/ log n

)
time by using the subtree isomorphism algo-

rithm of Shamir and Tsur (1999). This is practically infeasible when the cardinality
of F is large, which is typically the case. Another difference between the two ap-
plication scenarios is that while the set of q-shingles for text documents forms an
anti-chain (i.e., the q-shingles are pairwise incomparable), subgraph isomorphism
induces a natural partial order on F . The transitivity of subgraph isomorphism
allows us to safely ignore features from F that do not influence the outcome of
min-hashing, resulting in a much faster algorithm.

To adapt the min-hashing technique to the situation that the patterns form a
nontrivial partial order and embedding computation is expensive, we proceed as
follows: In a preprocessing step, directly after the generation of F , we generate
K random permutations π1, . . . , πK : F → [|F|] of F (see Broder et al, 2000, for
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the details) and fix them for computing the min-hash values that will be used
for similarity query evaluations (cf. Section 2). We assume that our algorithm
will be applied to a large number of transaction graphs and that the runtime of
computing the embeddings will dominate the overall time complexity. Hence we
can allow preprocessing time and space that is polynomial in the size of the pattern
set F . Therefore, we explicitly compute and store π1, . . . , πK , and do not apply
any implicit representations of them. This is particularly true, as we compute F
explicitly in the preprocessing step and spend time that is polynomial in F anyway.

For a graph G with a random forest Sk(G) and for a permutation π of F , let

hπ(G) = argmin
T∈F

{π(T ) : T 4 Sk(G)} .

The sketch of G with respect to π1, . . . , πK is then defined by

Sketchπ1,...,πK (G) = (hπ1(G), . . . , hπK (G)) .2

The rest of this section is devoted to the following problem: Given π1, . . . , πK ,
G with forest Sk(G) as above, compute Sketchπ1,...,πK (G). The first observation
that leads to an improved algorithm computing Sketchπ1,...,πK (G) is that for
any i ∈ [K], πi may contain trees that can never be the first matching patterns
according to πi. Indeed, suppose we have two patterns T1, T2 ∈ F with T1 4 T2
and πi(T1) < πi(T2). Then for Sk(G) we have either

1. T1 4 Sk(G) and hence T2 is not the first matching pattern in πi or
2. T1 64 Sk(G) and hence T2 64 Sk(G) by the transitivity of subgraph isomor-

phism.

For both cases, T2 will never be the first matching pattern according to πi and can
therefore be omitted from this permutation. Algorithm 4 implements this idea for
a single permutation π of F . It filters the permutation π and returns an evaluation

sequence σ by traversing π in order and removing all patterns for which Case 1 or 2
hold. This evaluation sequence can be substituted for the permutation to compute
the min-hash values, as stated in the following lemma:

Lemma 1 Let σ = 〈T1, . . . , Tl〉 be the output of Algorithm 4 for a permutation π of

F . Then, for any graph G with Sk(G),

hπ(G) = argmin
Ti∈σ

{i : Ti 4 Sk(G)} .

Proof Let H = hπ(G), i.e., H = argminT∈F {π(T ) : T 4 Sk(G)} and let H ′ =
argminTi∈σ{i : Ti 4 Sk(G)}. The output of Algorithm 4 only contains elements
of π (Line 7) and maintains their order, i.e., if T comes before T ′ in σ, then
π(T ) < π(T ′). Hence, π(H) ≤ π(H ′). It only remains to show that H is contained
in σ. If H is not appended to σ in Line 7 then visited(H) = 1 must have held in
Line 4. Hence, there must have been a T before H in π such that T 4 H. However,
H 4 Sk(G) implies T 4 Sk(G), contradicting our assumption H = hπ(G). ut

Algorithm 4 runs in time O (|F|). Loop 5 can be implemented by a DFS that
does not recurse on the visited neighbors of a vertex. In this way, each edge of F
is visited exactly once during the algorithm.

2 In practice, we do not store the patterns in Sketchπ1,...,πK (G) explicitly. Instead, we
define some arbitrary total order on F and represent each pattern by its position according to
this order.
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Algorithm 4 Poset-Permutation-Shrink

Input: directed graph F = (F , E) representing a poset (F ,4) and permutation π of F
Output: evaluation sequence σ = 〈T1, . . . , Tl〉 ∈ F l for some 0 < l ≤ |F| with π(Ti) < π(Tj)

for all 1 ≤ i < j ≤ l

1: Initialize σ := empty list
2: Initialize visited(T ) := 0 for all T ∈ F
3: for all T ∈ F in the order of π do
4: if visited(T ) = 0 then
5: for all T ′ ∈ F (including T ) that are reachable from T in F do
6: set visited(T ′) := 1

7: append T to σ

8: return σ

We now turn to the computation of Sketchπ1,...,πK (G) for a graph G with
Sk(G). A straightforward implementation of calculating Sketchπ1,...,πK (G) for
the evaluation sequences σ1, . . . , σK computed by Algorithm 4 for π1, . . . , πK just
loops through each evaluation sequence, stopping each time the first match is
encountered. This strategy can further be improved by utilizing the fact that a
pattern T may be evaluated redundantly more than once for a graph G with
forest Sk(G), if T occurs in more than one permutation before or as the first
match. Lemma 2 below formulates necessary conditions for avoiding redundant
subgraph isomorphism tests. To this end, let |σ| denote the number of elements in
an evaluation sequence σ.

Lemma 2 Let G be a graph with Sk(G) and let σ1, . . . , σK be the evaluation sequences

computed by Algorithm 4 for the permutations π1, . . . , πK of F . Let A be an algorithm

that correctly computes Sketchπ1,...,πK (G) by evaluating subgraph isomorphism in the

pattern sequence Σ = 〈σ1[1], . . . , σK [1], σ1[2], . . . , σK [2], . . .〉. Then A remains correct

if for all i ∈ [K] and j ∈ [|σi|], it skips the evaluation of σi[j] 4 Sk(G) whenever one

of the following conditions holds:

1. σi[j
′] 4 Sk(G) for some j′ ∈ [j − 1],

2. there exists a pattern T before σi[j] in Σ such that σi[j] 4 T and T 4 Sk(G),

3. there exists a pattern T before σi[j] in Σ such that T 4 σi[j] and T 64 Sk(G).

Proof If Condition 1 holds then the min-hash value for permutation πi has already
been determined. If σi[j] 4 T and T 4 Sk(G) then σi[j] 4 Sk(G) by the transi-
tivity of subgraph isomorphism. For the same reason, if T 4 σi[j] and T 64 Sk(G)
then σi[j] 64 Sk(G). Hence, if Condition 2 or 3 holds then A can infer the answer
to σi[j] 4 G without explicitly performing the subtree isomorphism test. ut

Algorithm 5 computes the sketch for a graph G with Sk(G) along the conditions
formulated in Lemma 2. Similarly to the algorithms in Section 4.1 it maintains a
state for all T ∈ F defined as follows: unknown encodes that T 4 G is unknown,
match that T 4 Sk(G), and noMatch that T 64 Sk(G).

Theorem 1 Algorithm 5 is correct, i.e., it returns Sketchπ1,...,πK (G). Furthermore,

it is non-redundant, i.e., for all patterns T ∈ F , it evaluates at most once whether or

not T 4 Sk(G).

Proof The correctness is immediate from Lemmas 1 and 2. Regarding non-redundancy,
suppose T 4 Sk(G) has already been evaluated for some pattern T ∈ F with
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Algorithm 5 Min-Hash Sketch

Input: graph G with forest Sk(G), directed graph F = (F , E) representing a poset (F ,4)
and K evaluation sequences σ1, . . . , σK computed by Algorithm 4 for the permutations
π1, . . . , πK of F

Output: Sketchπ1,...,πK (G)

1: Initialize sketch := [⊥, . . . ,⊥]
2: Initialize state(T ) := unknown for all T ∈ F
3: for i = 1 to |F| do
4: for j = 1 to K do
5: if |σj | ≥ i ∧ sketch[j] = ⊥ then
6: if state[σj [i]] 6= unknown then
7: if state[σj [i]] = match then sketch[j] = σj [i]

8: else if σj [i] 4 Sk(G) then
9: sketch[j] = σj [i]

10: Set state[T ′] = match for all T ′ that can reach T in F
11: else
12: Set state[T ′] = noMatch for all T ′ reachable from T in F

13: return sketch

T = σi[j]. Then, as T 4 T , for any σi′ [j
′] = T after σi[j] in Σ either Condition 2

or 3 holds and hence T 4 Sk(G) will never be evaluated again. ut

Once the sketches are computed for two graphs G1, G2, their Jaccard-similarity
with respect to F can be approximated by the fraction of identical positions in
these sketches. (We define the similarity of G1 and G2 with Sketchπ1,...,πK (G1) =
Sketchπ1,...,πK (G2) = (⊥, . . . ,⊥) by 0.)

5 Experimental Evaluation

To evaluate the methods described in Sections 3 and 4, we have conducted various
experiments on different real-world and artificial datasets. In Section 5.1 we first
consider the probabilistic frequent subtree mining algorithm and demonstrate that,
except for small molecular graphs, it outperforms ordinary frequent subgraph min-
ing in runtime. We analyze also its recall and stability with respect to the complete

set of frequent tree patterns. In Section 5.2 we then empirically investigate our
algorithms from Section 4 concerning complete and partial embedding into PFS
feature spaces. We evaluate their speed measured by the number of subtree isomor-
phism tests performed. We show that our methods drastically reduce this number
compared to the brute-force and the levelwise algorithms discussed in Section 4.
In Section 5.3 we finally evaluate the predictive and retrieval performance of proba-
bilistic frequent subtrees applied in kernel and other distance-based methods. Our
experimental results clearly show that PFS feature spaces perform only slightly
worse than ordinary frequent subgraph feature spaces (using the same frequency
thresholds). This minor drawback of probabilistic frequent subtrees is, however,
compensated by their high recall and stability, as well as by the superior runtime

results of our methods.
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Datasets: For the experiments we have used the chemical graph datasets MUTAG,
PTC, DD, NCI1, and NCI1093, NCI-HIV4, and ZINC5.

– MUTAG is a dataset of 188 connected compounds labeled according to their
mutagenic effect on Salmonella Typhimurium.

– PTC contains 344 connected molecular graphs, annotated with respect to the
carcinogenicity in mice and rats.

– DD consists of 1, 187 protein structures, of which 1, 157 are connected. Labels
differentiate between enzymes and non-enzymes.

– NCI1 and NCI109 contain 4, 110 resp. 4, 127 compounds, of which 3, 530 resp.
3, 519 are connected. Both are balanced sets of chemical molecules labeled
according to their activity against non-small cell lung cancer (resp. ovarian
cancer) cell lines.

– NCI-HIV consists of 42, 687 compounds, of which 39, 337 are connected. The
molecules are annotated with respect to their activity against the human im-
munodeficiency virus (HIV). In particular, they are labeled by “active” (A),
“moderately active” (M), or “inactive” (I). While the five datasets above all
have a balanced class distribution, the class distribution of NCI-HIV is heavily
skewed: Only 329 molecules (i.e., less than 1%) are in class A, 906 in class M,
and the remaining 38, 102 in class I.

– ZINC is a subset of 8, 946, 757 (8, 946, 755 connected) unlabeled, so called ’Lead-
Like’ molecules from the zinc database of purchasable chemical compounds.
The molecules in this subset have a molar mass between 250 and 350 g/mol
and have an average number of vertices and edges 43 and 44, respectively.

– Additionally, we generated artificial datasets consisting of unlabeled sparse
graphs of varying number of vertices and edges that were generated in the
Erdős-Rényi random graph model (Erdős and Rényi, 1959). The datasets gen-
erated are of different structural complexity defined by the expected edge factor

q = m
n (recall that n is the number of vertices and m the number of edges). For

a given q, each graph G in the corresponding dataset is generated as follows:
We first draw the number n of vertices uniformly at random between 2 and 50,
set the Erdős-Rényi edge probability parameter p = 2q

n−1 , and then generate
G on n vertices in the usual way with this value of p. If the resulting graph is
connected, we add it to the dataset.

Since we described our methods for connected graphs, disconnected graphs have
been omitted. We have restricted the maximum size of a tree pattern to 10 vertices,
as this bound seemed consistently optimal for the predictive/ranking performance
for all chemical datasets used in our experiments. (We stress that our method is
not restricted to constant-sized tree patterns.) The same observation was reported
by Teixeira et al (2012), as well. All our experiments were conducted on an Intel
i7 CPU with 3.40GHz and 16GB of RAM.

3 All these five datasets were obtained from http://www.di.ens.fr/~shervashidze/.
4 https://cactus.nci.nih.gov/
5 http://zinc.docking.org/subsets/lead-like

http://www.di.ens.fr/~shervashidze/
https://cactus.nci.nih.gov/
http://zinc.docking.org/subsets/lead-like
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5.1 Mining Probabilistic Frequent Subtrees

In this section we empirically evaluate our probabilistic frequent subtree mining
algorithm described in Section 3. We first present results demonstrating that it
is faster up to an order of magnitude than any comparable frequent subgraph
mining algorithm and that it is able to mine frequent patterns also in situations
where state-of-the-art algorithms do not. We then empirically demonstrate that
the recall of its output is high with respect to the set of all frequent subtrees.
Finally we give empirical evidence that probabilistic frequent subtrees are stable
under resampling of the random spanning trees. The establishment of these three
properties of probabilistic frequent subtrees is the first step towards considering
PFS feature spaces as candidates for graph classification and retrieval tasks.

Runtime We first compare the runtime of the FSG algorithm6 (Deshpande et al,
2005) with that of our algorithm on artificial datasets and on subsets of the ZINC
dataset. For our algorithm we report the combined time for sampling and frequent
pattern generation. In particular, we use the method of Wilson (1996) in Line 3 of
Algorithm 1 to generate random spanning trees and an efficient implementation
of a frequent tree mining algorithm7 to list frequent subtrees in Line 5.

Figure 2 shows the runtime on artificial datasets for expected edge factors q
varying between 1.0 and 5.0. (Note the log scale for the y-axis.) We report average
execution times over three runs for computing the set of frequent patterns and
that of probabilistic frequent subtrees for various numbers of random spanning
trees (k). It turns out that FSG is very sensible to the parameter q. In order to be
able to get any result in reasonable time, we had to restrict the number of graphs
in each dataset to 50. Still we had to terminate FSG in several cases where it took
more than 24 hours (86,400s), which was consistently the case once q exceeded
1.8. Up to 50 sampled spanning trees, our probabilistic approach is always faster;
for q > 1.4 our method still terminates in less than a second for all k, while FSG
was aborted after a day without finishing.

Figure 3 reports the runtime results (in seconds) on a subset of 1,000 molecules
of the ZINC dataset for FSG and for our algorithm with k ∈ {1, 5, 20, 50}. In
contrast to the runtime on artificial datasets, our method is faster only for k = 1,
while being slower than FSG even for the case of k = 5. To this end, we note that

the average edge factor (cf. the definition of q), i.e., 1
|D|

∑
G∈D

|E(G)|
|V (G)| of chemical

datasets D is very low: It is 1.04 for both NCI-HIV and ZINC. We therefore
assume that FSG is highly optimized for structurally very simple labeled graphs,
where it has a competitive advantage over our method.

6 http://glaros.dtc.umn.edu/gkhome/pafi/overview
7 We experimented with several publicly available frequent tree mining algorithms for for-

est databases but, somewhat surprisingly, they were not able to beat the speed of FSG on
forest datasets resulting from the spanning tree sampling step. Our implementation generates
frequent trees with levelwise search. It uses the algorithm of Shamir and Tsur (1999) as the
subroutine for the support counting step. In this way, we are able to guarantee pattern enumer-
ation in incremental polynomial time. Though we used several standard optimizations (e.g.,
evaluating the embedding operator only on the intersection of the support sets of the parent
patterns), our implementation can further be improved.

http://glaros.dtc.umn.edu/gkhome/pafi/overview
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Fig. 2: Runtime of our method, compared to FSG on artificial datasets of varying
expected edge factor q. Dots over bars signal that the run was terminated after 24
hours.

Recall As discussed in Section 3, for any graph database the pattern set F found
by our probabilistic mining algorithm is a subset of all frequent subtrees FT ,
which in turn is a subset of all frequent subgraphs. We now analyze the recall of
our method, i.e., the amount of frequent subtree patterns that are found when

applying Algorithm 1 for various values of k and θ. To this end, let R(k, θ) := |F|
|FT |

be the fraction of θ-frequent tree patterns found by Algorithm 1 for k random
spanning trees. Using the FSG algorithm, on each dataset we first compute all
frequent connected patterns, including non-tree patterns as well, and then filter
out all frequent subgraphs that are not trees.

Figure 4 shows the recall R(k, θ) of our method for one run on artificial datasets
and for frequency thresholds 10% and 20%. It is restricted to expected edge factors
q ≤ 1.8, as FSG was not able to compute the full set of frequent patterns within a
day beyond this value. Even for a single spanning tree (i.e., for k = 1), the recall is
always above 20%; in most cases actually above 40%. The recall for k = 5 sampled
spanning trees is drastically higher than for k = 1; in fact the increase in recall
between k = 5 and k = 50 is much lower. This suggests that k = 5 might be a
good compromise in the trade-off between runtime and accuracy of our method.

For NCI-HIV and ZINC, we sample 10 subsets of 100 graphs each and re-
port the average value of R(k, θ) and its standard deviation. The results on the
two datasets can be found in Table 1 for different values of k and for frequency
thresholds 5%, 10%, and 20%. We have found that at least 95% of all frequent
subgraphs are trees. One can also observe that the fraction of the retrieved tree
patterns grows rapidly with the number of random spanning trees sampled per



20 Pascal Welke et al.

20%10%5%
0

100

200

300

400

Frequency Threshold

T
im

e
[s

]

Runtime on ZINC1000

k = 1 k = 5 k = 20 k = 50 FSG

Fig. 3: Runtime results in seconds for our method and FSG, for different frequency
thresholds θ ∈ {5%, 10%, 20%}.
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Fig. 4: Recall of our method on artificial graph databases with varying expected
edge factor q, for frequency thresholds 10% and 20%.

graph. Sampling 10 spanning trees per graph already results in around 90% recall
for the ZINC dataset and in a recall of 80% for the NCI-HIV dataset.

Stability The results above indicate that a relatively high recall of the frequent tree
patterns can be achieved even for a very small number of random spanning trees.
We now report empirical results showing that the output pattern set of Algorithm 1
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θ k = 1 k = 2 k = 3 k = 10 k = 20
5% 20.13± 1.20 35.53± 1.34 46.48± 0.51 78.32± 0.85 91.11± 1.29

NCI-HIV 10% 20.26± 2.22 34.45± 1.42 45.40± 1.59 79.94± 1.82 92.44± 1.34
20% 24.45± 1.38 39.76± 1.68 50.41± 1.14 83.38± 1.40 94.72± 1.31
5% 36.80± 0.87 56.70± 1.65 68.42± 0.94 92.50± 0.45 97.92± 0.55

ZINC 10% 32.77± 1.89 51.36± 1.84 64.47± 1.40 92.49± 1.18 86.70± 22.83
20% 31.03± 2.59 48.99± 3.05 61.41± 3.41 90.53± 1.28 97.89± 0.40

Table 1: Recall with standard deviation of the probabilistic tree patterns on the
NCI-HIV and ZINC datasets for frequency thresholds 5%, 10%, and 20%.

Iteration 1 2 3 4 5 6 7 8 9 10 S(G)
NCI-HIV 3920 20 5 10 14 7 2 6 7 2 169
ZINC40k 9898 18 17 11 10 22 7 7 9 1 36

(a) NCI-HIV and ZINC for θ = 10% and k = 1 sampled tree.

Iteration 1 2 3 4 5 S(G)m
q = 1.0 692 2 5 8 3 7
q = 1.2 750 2 0 0 11 55
q = 1.4 806 18 0 0 0 2267
q = 1.6 824 1 0 0 0 3.4e5

q = 1.8 824 2 0 0 0 8.7e7

q = 2.0 850 0 0 1 0 19e9

q = 3.0 814 26 1 4 0 99e15

q = 5.0 822 4 0 0 20 11e22

(b) Random graphs with different edge factors q for
θ = 10% and k = 10 sampled trees.

Table 2: Repetitions of the probabilistic frequent subtree mining experiment. The
numbers reported are the number of probabilistic patterns that were not in the
union of all probabilistic patterns found up to the current iteration. S(G) denotes
the median number of spanning trees per graph in the data set for comparison.

is quite stable (i.e., independent runs of our probabilistic frequent tree mining
algorithm yield similar sets of frequent patterns). To empirically demonstrate this
advantageous property, we run Algorithm 1 several times on the same values of the
parameters k and θ and observe how the union of the probabilistic tree patterns
grows.

To this end, we fix two sets of graphs, each of size approximately 40, 000,
as follows: We take all connected graphs in NCI-HIV, as well as a random subset
ZINC40k of ZINC that contains 40, 000 graphs. We run Algorithm 1 10 times for the
datasets obtained with parameters k = 1 and θ = 10%. Each execution results in
a set Fi of probabilistic subtree patterns, from which we define Ui =

⋃i
j=0 Fj with

F0 := ∅. Table 2 (a) reports |Fi \ Ui−1|, i.e., the number of new probabilistic subtree
patterns found in iteration i for i = 1, . . . , 10 on the left. For an initial number
of 3, 920 (NCI-HIV) and 9, 898 (ZINC40k) probabilistic patterns, the number of
newly discovered patterns drops to at most 22 in the upcoming iterations.

We observed this behavior consistently on the artificial graphs (over all ob-
served edge factors, all numbers of sampled spanning trees, and all frequency
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Dataset k θ |F| Levelwise Greedy BinarySearch
MUTAG 5 10% 452 206.38 116.12 131.07
MUTAG 10 10% 543 244.11 148.02 163.04
MUTAG 15 10% 562 254.86 148.98 167.66
MUTAG 20 10% 573 260.18 151.82 173.91
PTC 5 10% 1,430 321.04 175.32 193.84
PTC 5 1% 9,619 734.79 411.26 472.86
PTC 10 10% 1,566 354.20 191.70 209.26
PTC 20 10% 1,712 376.65 206.36 228.60
DD 5 10% 8,111 3,547.22 3,883.22 3,591.63
DD 10 10% 18,137 6,670.93 7,417.47 6,731.36
DD 20 10% 33,100 11,005.49 12,091.99 11,091.27
NCI1 5 10% 1,819 431.19 284.74 303.03
NCI1 5 1% 21,306 900.68 617.95 675.61
NCI1 20 10% 2,441 557.70 364.23 392.65
NCI109 5 10% 2,182 462.62 306.05 330.39
NCI109 5 1% 19,099 886.06 607.39 670.34
NCI109 20 10% 2,907 598.36 391.59 422.38

Table 3: Average number of subtree isomorphism tests per graph of the algorithms
from Section 4.1 on different datasets and corresponding pattern sets F for varying
number k of random spanning trees and frequency thresholds θ.

thresholds). Table 2 (b) shows the results for θ = 10%, k = 10, and 5 iterations
on the right. Similarly to the evaluation of the recall above, each artificial dataset
consists of 50 graphs. To put our recall and stability experiments into context,
note that the median8 number of spanning trees per graph is depicted in Table 2,
as well.

These results together clearly show that the generated feature set does not

depend too much on the particular spanning trees selected at random. Overall
this means that independent runs of our algorithm yield similar feature sets on
the same data. This observation, combined with the remarkable recall results of
the previous experiment, is essential; high recall and stability together indicate
that the predictive performance of any (computationally intractable) exact fre-
quent subtree based method can closely be approximated by our (computationally
feasible) probabilistic frequent subtree based algorithm, even for small values of k.
We will further study the predictive performance of probabilistic frequent subtrees
in Section 5.3.

5.2 Fast Graph Embedding into PFS Feature Spaces

We now empirically investigate the speedup of the methods proposed in Section 4.1
for computing complete and partial embeddings into PFS feature spaces. (We
recall that the methods in Section 4.1 are not specific to probabilistic frequent tree
patterns.) The main goal of the methods considered was to reduce the number of
subgraph isomorphism tests during the computation of the complete feature vector
or the min-hash sketch for a query graph. We assess their effectiveness from this

8 We use the median, as there are some graphs with excessively many spanning trees that
distort the average.
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aspect by investigating the average number of subtree isomorphism evaluations
(i.e., Is T 4 Sk(G)?) per graph on various real-world datasets. To this end, we
implemented our algorithms in C using the subtree isomorphism algorithm by
Shamir and Tsur (1999) and the sampling algorithm by Wilson (1996).

We start by investigating our methods computing complete embeddings. To
obtain probabilistic frequent subtree pattern sets, we have applied our frequent
subgraph mining method from Section 3 with different values of k and θ to a ran-
domly sampled subset of 10% of the graphs in each dataset. Using the resulting
set of probabilistic trees and the same k, we computed the binary feature vector
for each graph in the datasets and calculated the average number of calls to the
pattern matching operator T 4 Sk(G). Table 3 shows the average number of sub-
tree isomorphism tests per graph for the Levelwise, Greedy, and BinarySearch

algorithms (cf. Section 4.1). For comparison, we report the cardinality of each pat-
tern set as well (column |F|), which is the number of pattern matching evaluations
performed by the brute-force embedding algorithm. It can be seen that Greedy

performs best in general, evaluating the matching operator on average only on
19.78% of all patterns. BinarySearch evaluates 20.49%, while Levelwise 27.47%
of all patterns per graph on average. The ranking of the methods is consistent over
all datasets, except for DD, where the ranking is reversed; here, Levelwise evalu-
ates less patterns than BinarySearch which, in turn, evaluates less patterns than
Greedy. Overall, however, we can conclude that Greedy and BinarySearch,
which prune both negative and positive patterns, outperform the methods not
pruning at all (brute-force) or pruning only negative patterns (Levelwise). This
is a significant improvement in light of the speed O

(
n2.5/ log n

)
of the fastest

subtree isomorphism algorithm (Shamir and Tsur, 1999).

We now compare our min-hash sketching technique (Algorithm 5) designed for
probabilistic frequent subtree patterns with the best naive complete embedding
algorithm from Table 3. It is important to note that our algorithm may perform
more subgraph isomorphism tests than the naive algorithm. This is due to the fact
that, in contrast to the naive algorithm, we do not traverse F systematically, but
randomly based on the selected permutations. Table 4 shows the average number
of subtree isomorphism tests per graph together with the cardinality of the pattern
set, for the same datasets and pattern sets as in Table 3. Column “best naive”
shows the average number of evaluations performed by the best method from Ta-
ble 3. The last four columns are the results of our algorithm for sketch size K =
32, 64, 128, and 256 respectively. One can see that Algorithm 5 (columns MH32–
MH256) performs dramatically less subtree isomorphism tests than the brute-force
algorithm (column |F|) and that it outperforms also the best algorithm for com-
plete embedding computation in all cases, except for θ = 1%. MH32 evaluates the
matching operator on average on 4.74% of all patterns, while MH256 evaluates on
average 12.92%. For example, on DD for k = 10 and θ = 10%, the best naive algo-
rithm (Levelwise) evaluates subtree isomorphism for 11,005 patterns per graph
on average, which is roughly one third of the total pattern set (|F|), while our
method evaluates subtree isomorphism 345 times on average for sketch size 32,
ranging up to 2,190 times for sketch size 256. Compared to that, the best naive
algorithm performs 6.6 (resp. 1.8) times as many subtree isomorphism tests as our
method for K = 32 (resp. K = 256). Again, this is a significant improvement in
light of the high runtime complexity of the subtree isomorphism test.
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Dataset k θ |F| best naive MH32 MH64 MH128 MH256
MUTAG 5 10% 452 116.12 49.93 68.24 96.12 127.42
MUTAG 10 10% 543 148.02 42.77 63.77 90.57 125.39
MUTAG 15 10% 562 148.98 45.39 65.96 94.87 133.91
MUTAG 20 10% 573 151.82 55.34 76.32 105.15 135.11
PTC 5 10% 1,430 175.32 70.07 102.62 121.12 156.12
PTC 5 1% 9,619 411.26 236.31 327.27 475.35 611.92
PTC 10 10% 1,566 191.70 79.63 108.59 109.44 147.91
PTC 20 10% 1,712 206.36 17.60 25.81 31.49 39.62
DD 5 10% 8,111 3,547.22 260.47 486.09 846.09 1,374.76
DD 10 10% 18,137 6,670.93 317.82 568.23 1,072.58 1,936.42
DD 20 10% 33,100 11,005.49 344.59 653.66 1,242.03 2,190.15
NCI1 5 10% 1,819 284.74 89.12 137.75 185.22 221.21
NCI1 5 1% 21,306 617.95 615.62 920.17 1,227.52 1,378.18
NCI1 20 10% 2,441 364.23 115.07 183.54 220.14 255.58
NCI109 5 10% 2,182 306.05 115.62 170.43 206.23 254.70
NCI109 5 1% 19,099 607.39 532.38 727.15 1,057.18 1,348.27
NCI109 20 10% 2,907 391.59 110.42 175.76 226.07 284.92

Table 4: Average number of subtree isomorphism tests per graph needed to com-
pute min-hash sketches for different datasets and corresponding pattern sets F for
varying number of random spanning trees (k) and frequency thresholds θ. We re-
port the average number of subtree isomorphism tests evaluated by the best naive
method computing a complete embedding for each graph and by Algorithm 5 for
K = 32, 64, 128, and 256 (last four columns).

5.3 Predictive and Retrieval Performance

Finally, we look at the suitability of PFS feature spaces for graph classification and
retrieval tasks. We show that the predictive performance of probabilistic frequent
subtree kernels is comparable to that of frequent subgraph kernels and that min-
hashing in PFS feature spaces only slightly decreases the performance of Hamming
feature spaces spanned by complete sets of frequent subgraphs. In fact, the proba-
bilistic frequent subtree and min-hash kernels yield results that are comparable to
the rbf-kernel over frequent subgraphs. To measure the retrieval performance of
probabilistic frequent subtrees, we use exact and approximate Jaccard-similarities
over PFS feature spaces to retrieve the closest molecules given a positive query
molecule. We show that the fraction of the closest molecules that are positive is
much higher than the baseline. These results together indicate that PFS feature
spaces are well-suited to express semantically relevant concepts in chemical graph
datasets.

Graph Classification We start by an empirical analysis of the predictive perfor-
mance of PFS feature spaces in the context of graph classification. We also consider
the Jaccard-similarity. It induces a kernel on sets, which is a special case of the
Tanimoto kernel (see, e.g., Ralaivola et al, 2005). Interestingly, its approximation
based on min-hashing is a kernel as well. Hence, we can use probabilistic frequent
subtrees and min-hash sketches in PFS feature spaces together with these two ker-
nels in support vector machines to learn a classifier. We use 5-fold cross-validation
and report the average area under the ROC curve obtained using libSVM (Chang
and Lin, 2011) for the datasets MUTAG, PTC, DD, NCI1, and NCI109. We omit
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the results with NCI-HIV because LibSVM was unable to process the Gram ma-
trix for this dataset. We note, however, that our algorithm required less than 10
(resp. 26) minutes for sketch size K = 32 (resp. K = 256) for computing the
Gram matrix for the full set of NCI-HIV, while this time was 5.5 hours for the
exact Jaccard-similarity. The runtime of the preprocessing step to compute a set
of probabilistic frequent subtrees on a sample of the database is not counted for
both cases, by noting that they were less than three minutes each.

To this end, we fixed the number of random spanning trees per graph to k = 5
and sampled 10% of the graphs in a dataset to obtain the probabilistic frequent
subtree patterns of up to 10 vertices. In Table 5 we report the results for θ = 10%
for our min-hash method with sketch sizes K varying between 32 and 256 (first
four rows), for exact Jaccard-similarity (row “PFS (Jacc)”), and for the rbf-kernel
(row “PFS (rbf)”), all using probabilistic frequent subtrees generated with the
parameters above. A lower frequency threshold is practically unreasonable e.g. for
MUTAG, as it contains only 188 compounds. We compare the results obtained
with frequent subgraph patterns (FSG) (Deshpande et al, 2005) using the full
set of frequent connected subgraphs of up to 10 vertices with respect to the full

datasets (i.e., not only for a sample of 10%) using the Jaccard (row “FSG (Jacc)”)
and rbf (row “FSG (rbf)”) kernels. We also report results obtained by the Hash-
kernel (row “HK”) (Shi et al, 2009), which uses count-min sketching on random
induced subgraphs up to size 9.

One can see that the results of MH256 are close to those obtained by exact
Jaccard-similarities over probabilistic frequent subtrees (PSF (Jacc)), which, in
turn, are close to those obtained by exact Jaccard-similarities over all frequent
subgraphs (FSG (Jacc)). Thus, the min-hash kernel in PFS feature spaces performs
only slightly worse than in ordinary frequent subgraph feature spaces (cf. MH256
vs. FSG (Jacc)). One can also observe that the min-hash kernel outperforms the
rbf-kernel in PFS feature spaces in all datasets, except for DD (cf. MH256 vs. PSF
(rbf)). It also outperforms the rbf-kernel in frequent subgraph feature spaces on all
datasets, except for NCI1 (cf. MH256 vs. FSG (rbf)). While the Hash-kernel is the
best by a comfortable margin on MUTAG, the contrary is true for DD (cf. MH256
vs. HK). Most notably, it could not provide any result for NCI1 and NCI109 in
practically reasonable time.

We also conducted these experiments for k = 20 random spanning trees. For
identical frequency threshold, the AUC improved by 3% on MUTAG, while only
slightly changing for the other datasets. Similar results to those in Table 5 were
obtained when reducing the frequency threshold of the methods to 1%: The AUC
improved roughly by 1%, processing time and memory consumption, however,
drastically increased.

Overall, we can conclude that (1) the predictive performance of PFS feature
spaces is comparable to that of frequent subgraph features spaces for molecular
graph mining, (2) Jaccard-similarities (more precisely, the Jaccard-kernel) is a
powerful similarity measure for chemical graphs, and (3) the min-hash kernel in
PFS feature spaces is a valid competitor to the rbf-kernel in frequent subgraph
feature spaces.

Positive Instance Retrieval Finally we use a simple setup to evaluate the retrieval
performance of min-hashing in PSF feature spaces by comparing it to exact Jaccard-
similarity in PFS feature spaces, as well as to the path min-hash kernel (Teixeira
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θ Method MUTAG PTC DD NCI1 NCI109
10% MH32 87.84 58.97 77.58 77.36 77.48
10% MH64 87.73 58.68 79.91 78.04 79.54
10% MH128 87.59 56.97 82.07 79.94 79.94
10% MH256 87.78 57.18 83.58 80.76 81.72
10% PFS (Jacc) 89.04 57.72 85.38 82.28 82.41
10% FSG (Jacc) 89.84 60.60 84.54 82.97 82.31
10% PFS (rbf) 84.22 54.17 84.67 79.09 78.05
10% FSG (rbf) 87.34 56.76 82.20 81.66 81.55

HK 93.00 62.70 81.00 n/a n/a

Table 5: AUC values for our method (MH) for sketch sizes K = 32, 64, 128, 256,
k = 5 spanning trees per graph, and frequency threshold θ = 10% to obtain the
feature set. “n/a” indicates that Shi et al (2009) did not provide results for the
respective datasets.
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Fig. 5: Average fraction of “active” molecules among the i nearest neighbors of
positive molecules in NCI-HIV dataset for path min-hash (Teixeira et al, 2012), ex-
act Jaccard-similarity for frequent probabilistic tree patterns, and for our method
with K = 64.

et al, 2012). For the evaluation we use the highly skewed NCI-HIV dataset. For
each molecule of class A (i.e., “active”) of NCI-HIV, we retrieve its i nearest neigh-
bors (excluding the molecule itself) from the dataset and take the fraction of the
neighbors of class A. This measure is known in the Information Retrieval commu-
nity as precision at i. As a baseline, a random subset of molecules from NCI-HIV
is expected to contain less than 1% of active molecules due to the highly skewed
class distribution. All methods show a drastically higher precision for the closest
up to 100 neighbors on average than this baseline.

Figure 5 shows the average precision at i (taken over all 329 active molecules)
for i ranging from 1 to 100. The number k of sampled spanning trees per graph,
as well as the frequency threshold θ has a strong influence on the quality of our
method. To obtain our results, we have sampled 5 (resp. 20) spanning trees for
each graph and used a random sample of 4, 000 graphs to obtain pattern sets
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for thresholds θ = 10% and θ = 0.5% respectively. We plot the min-hash-based
precision for the four feature sets obtained in this way by our algorithm as a
function of i for sketch size K = 64. We have compared this to the precision
obtained by the exact Jaccard-similarity for θ = 10% and k = 5, as well as to
the precision obtained by path min-hash (Teixeira et al, 2012), both for the same
sketch size K = 64.

The average precision obtained for the exact Jaccard-similarities is slightly
better than that of path min-hash. While our method performs comparably to
path min-hash for θ = 0.5% and k = 5, for θ = 0.5% and k = 20 spanning trees it
outperforms all other methods.

We were not able to compute the precisions for θ = 1% or for k = 20 sampled
spanning trees for the exact Jaccard-similarity. The Python implementation we
used to calculate the similarity computations for exact Jaccard-similarity was not
able to deal with the high dimensionality of the feature space, independently of the
sparsity of the feature vectors. This indicates that the space required to compute
the Jaccard-similarity is crucial for high-dimensional feature spaces.

6 Concluding Remarks

We proposed simple probabilistic techniques to resolve the computational in-
tractability of problems related to frequent subgraph feature spaces. In particular,
we gave up the requirement of completeness to arrive at an efficient probabilistic
frequent subtree mining algorithm for arbitrary graph databases and a correspond-
ing efficient probabilistic embedding method for unseen graphs that is not correct.
Our empirical results on various real-world benchmark graph datasets show that
the resulting PFS feature space with the incorrect embedding operator is stable
and expressive enough in terms of predictive and retrieval performance compared
to the frequent subgraph feature spaces with the correct embedding operator. In
contrast to ordinary frequent subgraphs, probabilistic frequent subtrees can be
computed much faster and the computation has a much smaller memory footprint
in all stages.

Our probabilistic mining and embedding techniques can naturally be extended
to disconnected transaction graphs as well. Indeed, for a disconnected transaction
graph G we can consider its spanning forests, each consisting of a random spanning
tree for each connected component of G. The forest Sk(G) generated in Algo-
rithm 1 then consists of k such spanning forests. Since any subgraph isomorphism
preserves connectivity, it remains true that any tree pattern that is subgraph iso-
morphic to Sk(G) is also subgraph isomorphic to G.

Though the probabilistic pattern matching operator can be evaluated in poly-
nomial time, each of its invocations during embedding into PFS feature spaces
induces a non-negligible amount of work. To accelerate the embedding, we intro-
duced different strategies to practically reduce the number of such calls by utiliz-
ing the anti-monotonicity of subgraph isomorphism on the tree pattern poset. In
particular, if one is interested in the Jaccard-similarity between two graphs then
min-hash sketches can be computed very efficiently in this way. We empirically
demonstrated the effectiveness of our algorithms, resulting in a theoretically ef-
ficient and practically effective system to embed arbitrary graph databases into
PSF feature spaces.
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Our algorithms to compute (partial) embeddings for a given tree pattern set
and for subtree isomorphism can easily be adapted to any finite pattern set and
pattern matching operator (e.g., exact subgraph isomorphism or graph homomor-
phism) if the pattern matching operator induces a partial order on the pattern
set in which it is (anti-)monotone. While the number of evaluations of the pat-
tern matching operator can drastically be reduced in this way, the complexity of
the algorithm depends on that of the pattern matching operator. The one-sided
error of our probabilistic subtree isomorphism test seems to have no significant
effect on the experimental results. This raises the question whether we can fur-
ther relax the correctness of subtree isomorphism resulting in an algorithm that
runs in at most sub-quadratic time, without any significant negative effect on the
predictive/retrieval performance.
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