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Abstract. We consider the problem of affinity prediction for protein
ligands. For this purpose, small molecule candidates can easily become
regression algorithm inputs if they are represented as vectors indexed by
a set of physico-chemical properties or structural features of their molec-
ular graphs. There are plenty of so-called molecular fingerprints, each
with a characteristic composition or generation of features. This raises
the question which fingerprint to choose for a given learning task? In ad-
dition, none of the standard fingerprints, however, systematically gathers
all circular and tree patterns independent of size and the adjacency in-
formation of atoms. Since structural and neighborhood information are
crucial for the binding capacity of small molecules, we combine the fea-
tures of existing graph kernels in a novel way such that finally both
aspects are covered and the fingerprint choice is included in the learning
process. More precisely, we apply the Weisfeiler-Lehman labeling algo-
rithm to encode neighborhood information in the vertex labels. Based on
the relabeled graphs we calculate four types of structural features: Cyclic
and tree patterns, shortest paths and the Weisfeiler-Lehman labels. We
combine these different views using different multi-view regression al-
gorithms. Our experiments demonstrate that affinity prediction profits
from the application of multiple views, outperforming state-of-the-art
single fingerprint approaches.

Keywords: graph kernels, molecular fingerprints, multiple kernel learn-
ing, support vector regression, Weisfeiler-Lehman labeling

1 Introduction

In biological organisms small molecular compounds bind to large proteins with
protein-ligand-specific affinities. If the real-valued affinity exceeds a given limit
the compound is called a ligand of the protein. The ligand binding process typ-
ically triggers biochemical processes, for example, via a change of conformation
or charge at the protein surface. Ligand (affinity) prediction is an important and
challenging practical problem in the range of quantitative structure-activity rela-
tionship (QSAR) models as many drugs act as ligands. In practice, for drug dis-
covery and design millions of compounds can be tested in the laboratory already



quite efficiently with high-throughput-screening (HTS) setups. Nevertheless, be-
cause of the expensive equipment and the quasi infinite number of synthesizable
chemical compounds the process is still very time- and cost-consuming. There-
fore, in chemoinformatics similarity-based virtual screening uses statistical rank-
ing and machine learning methods in combination with molecular descriptors
to train a binding model for the considered protein. Behind these approaches
is the similarity assumption that similar compounds show similar binding be-
havior. As mentioned above, the protein-ligand-docking complex has a certain
strength which can be measured as binding affinity Ki. For the prediction of
affinities the well-known support vector regression (SVR) utilizing a vectorial
feature representation of small molecules, the so-called molecular fingerprints,
is the state-of-the-art method and was tested successfully (e.g., [9], [1], [17]).
However, other machine learning algorithms like neural networks trained with
molecular fingerprint data [10] were applied for the affinity prediction task as
well. For a complete overview of approaches we point to the survey of Cherksov
et al. [4].

Many publicly available or commercial fingerprint descriptors exist, just to
mention a few: Maccs Keys, ECFP/C and FCFP/C fingerprints, GpiDAPH fin-
gerprints, TGD or TGT. The fingerprints list (or count) diverse physico-chemical
properties of the molecule, structural properties of their molecular graphs, or
3D information, and can be grouped according to their respective generation
of features [2]. Additionally, even more molecular descriptors gathering graph
structure information arise from the field of graph theory and have been proven
beneficial (e.g., [11], [7]). The variety of data descriptions is a blessing and a
curse at the same time. On the one hand, a lot of different information sources
for diverse learning tasks are available. On the other hand, this includes the
necessity to choose a representation in order to obtain optimal results. Hence,
we intend to overcome this problem by using multiple representations simulta-
neously. There are related QSAR approaches (e.g., [7], [18]) which we would like
to complement in this paper. Anyway, the method we will present is applicable
for arbitrary graph data with multiple representations and real-valued labels.

Both structural and neighborhood information are crucial for the capacity
of small molecules to be a ligand and for the strength of the bond (e.g., [12],
[7]). For example, the presence of a benzene ring or that of an alcoholic group
and their relative positions influence the chemical properties of the compound
at hand. None of the existing fingerprints that collect structural information,
however, captures both all circular and tree patterns of the molecular graph
independent of size and the adjacency and connectivity information of atoms
within the graph structure. Therefore, we propose to combine the feature set
of the cyclic pattern kernel (CPK) [8] with that of shortest path (SP) kernels
[3] and Weisfeiler-Lehman (WL) labels [14]. The WL algorithm assigns (new)
labels to each vertex in the graph that depend on the surrounding vertices up
to a certain distance h. CPK decomposes a graph into the set of contained
cycles (C) and remaining tree components (T ) of edges that do not belong to
cycles. Shortest path features (P) collect the shortest paths from one vertex



to another. Finally, we also consider the labels of the atoms (L) themselves as
features. Hence, for each depth h of the WL algorithm, we obtain four types
of features (Ch, Th,Ph,Lh) for each graph. Each of these 4 · h feature sets can
possibly be a (weighted) part of a resulting fingerprint. Additionally, a feature
vector can either list or count features of a compound (binary or counting feature
representation, see [12]). However, it is neither clear which of them to keep in the
application scenario of affinity prediction, nor obvious which role the components
play for the predictive process. Hence, we apply a systematic process to obtain
an optimal combination of the proposed feature sets.

On an abstract level, these components can also be considered multiple views
on molecular graphs. Including different views on data to learn one prediction
function is known as multi-view learning. In general, a view or feature vector
representation Φ is canonically related to a kernel function k via Mercer’s theo-
rem

k(x, x′) = 〈Φ(x), Φ(x′)〉 , x, x′ ∈ X , (1)

where X is the instance space of learning objects. In our case X are the potential
ligands and Φ(x) would be the feature vector. We use the supervised kernel
methods multiple-kernel learning (MKL) and its solution from Vishwanathan et
al. [19] and learning kernel ridge regression (LKRR) by Cortes et al. [6]. Both
algorithms learn a linear combination of kernel functions corresponding to the
provided views. The linear combination of functions is included into a regularized
empirical risk functional with ε-insensitive loss function (MKL) or squared loss
function (LKRR). Hence, they virtually solve a multi-view SVR and multi-view
regularized least squares regression (RLSR) problem. We will employ these multi-
view kernel methods to find and use a combination of our features that suits
the learning process best. Out of the rich set of patterns we aim at finding
optimal compositions or combinations of views for the affinity prediction learning
task. In the case of the linear kernel this is equivalent with utilizing a novel
fingerprint representation with differently weighted pattern components, such
that the identification of optimal weights is part of the learning process itself.
Finally, this approach allows us to incorporate multiple feature representation
for structural and neighborhood information with an automatic weighting that
highlights the importance of the pattern group for the affinity prediction task.

2 Regression with Multiple Views

In the practical scenario of ligand affinity prediction we are looking for a real-
valued predictor function f defined on an instance space X of molecules, i.e.,
f : X → R. Here, f should be an element of a certain candidate space of
functions H and the molecules in X can be regarded as graphs of atoms and
bonds (see Fig. 1 below). A particular choice for H is a reproducing kernel Hilbert
space (RKHS), a function space that is canonically related to a so-called kernel
function k : X × X → R. In the supervised scenario with training examples
(x1, y1), . . . , (xn, yn) ∈ X × R, a common approach to find a good predictor



is the principle of regularized empirical risk minimization (ERM) as a trade-
off between empirical risk and function norm. Utilizing the ε-insensitive loss or
the squared loss function for the empirical risk we obtain the SVR and RLSR
formulation, respectively. For a thorough study of SVR and RLSR as well as their
kernelized variants consult, for example, [16] or [5]. When we choose an RKHS H
with reproducing kernel k as function space the representer theorem of Schölkopf
et al. [15] implies a representation of the solution f∗. In fact, it turns out that f∗

must be a linear combination of the kernel function k centered at training points
that can be used to parameterize all considered optimization problems. Now let
Φ1, . . . , ΦM be M views with corresponding kernels k1, . . . , kM according to (1),
and respective RKHSs H1, . . . ,HM . Having multiple representations on data we
want to apply SVR- and RLSR-related multi-view kernel algorithms. In contrast
to using only one single view or kernel in the regularized ERM, the supervised
multi-view approaches we consider incorporate a linear combination of kernel
functions

k(x, x′) =

M∑
v=1

bvkv(x, x′) =

M∑
v=1

bv 〈Φv(x), Φv(x′)〉 , (2)

which itself is a kernel again for bv ≥ 0. In order to prevent overfitting, the
linear factors b = (b1, . . . , bM ) need to be regularized additionally. As the kernel
expansion parameters from the representer theorem and linear factors b have
to be learned simultaneously, the solution strategies of SVR- and RLSR-related
multi-view approaches are different to the ones of single-view SVR and RLSR.
On the one hand, the multiple kernel learning (MKL) algorithm presented in [19]
utilizes the p-norm, p > 1, for the regularization of b. Hence, the MKL objective
becomes f∗1 , . . . , f

∗
M =

argmin
fv∈Hv,bv≥0

1

2

M∑
v=1

‖fv‖2Hv
+ C

n∑
i=1

max {0, |f(xi)− yi| − ε}+
Λ

2

(
M∑
v=1

bpv

) 2
p

,

where f =
∑M

v=1 bvfv and C,Λ, ε > 0. Actually, there are other variants of MKL
which we do not want to consider. On the other hand, the learning kernel ridge
regression (LKRR) algorithm from [6] requires b being close to a constant vector
b0. The LKRR objective is

f∗1 , . . . , f
∗
M = argmin

fv∈Hv

M∑
v=1

‖fv‖2Hv
+ C

n∑
i=1

|f(xi)− yi|2

s.t. ‖b− b0‖ ≤ Λ, bv ≥ 0,

where again f =
∑M

v=1 bvfv as well as b0v, Λ > 0. For the solution of MKL and
LKRR we refer to [19] and [6].

3 Patterns for Molecular Graphs

Our contribution in this paper is the intelligent combination of several graph pat-
terns for the task of ligand prediction. To this end we now define four pattern



Fig. 1. Glucose molecule in its 3D (left) and graph representation (right). All bonds
in glucose are single bonds, hence edge labels are omitted.

sets or classes and corresponding kernels that incorporate structural and neigh-
borhood information. Finally, we define a multi-pattern kernel based on these
patterns that allows efficient combinations of patterns based on the methods
presented in the previous section.

A labeled, undirected graph is a quadruple G = (V,E,Σ, λ), with V being a
finite set of vertices, E ⊆

(
V
2

)
a set of edges, Σ a finite linearly ordered set of

labels, and λ : V ∪E → Σ a function assigning a label to each vertex and edge.
For the computation of patterns we consider molecules as labeled, undirected
graphs such that atoms correspond to vertices (labels: C, O, H, N, ...) and
bonds to edges (labels: single, double, and aromatic). An example is shown in
Fig. 1. A sequence w = {v0, v1} , {v1, v2} , . . . , {vk−2, vk−1} , {vk−1, vk} of edges
of a graph is called simple path if vi 6= vj for all i, j with 1 ≤ i < j ≤ k (the
vertex v should not be confused with the view index v). If additionally v0 = vk
holds true, the sequence is called simple cycle. Edges not belonging to any simple
cycle are called bridges. A forest is an undirected graph that does not contain
a cycle, a connected (i.e., where any two vertices are connected by a simple
path) forest is called a tree. Two labeled, undirected graphs G = (V,E,Σ, λ)
and G′ = (V ′, E′, Σ′, λ′) are isomorphic, if there is a bijection ϕ : V → V ′ that
respects edges and labels, i.e., {v, w} ∈ E if and only if {ϕ(v), ϕ(w)} ∈ E′, as
well as λ(v) = λ′(ϕ(v)), and λ({v, w}) = λ′({ϕ(v), ϕ(w)}).

In the following we will review four types of graph patterns: Label patterns L,
cyclic patterns C, tree patterns T , and shortest path patterns P. These patterns
already appear in the definitions of the popular graph kernels Weisfeiler-Lehman
kernel (WLK), cyclic pattern kernel (CPK), and shortest path kernel (SPK).
First, we introduce the Weisfeiler-Lehman labeling of a graph G’s vertices as the
basis for the WL test of graph isomorphism as well as the WLK of Shervashidze
et al. [14], represented by the recursive labeling function λhG : V → Σ∗ for



  

N

O

N

O

N

O

NC

C C

O

CC

C N

O

C,CN N,CC

C,CO C,NO

O,CC

C,CC C,CN

C,CO N,CO

O,CN

Molecular Graph       Depth h = 0         (h=1 before relabeling)                    Depth h = 1

    Oxazol                      G
0
                                                                                G

1
   

     Isoxazol                    G'
0
                                                                                  G'

1

X Y

W Z

V

U X

W S

T

r

r

Fig. 2. WL labeling of two molecular graphs.

recursion depth h. Initially, it holds that λ0G = λ. That means for depth h = 0
the WL labels are the original vertex labels. For each recursion step we append
to each vertex label λhG(v), v ∈ V , a sorted list of all labels from adjacent vertices
and obtain

λh+1
G (v) = r

(
λhG(v), sort

({
λhG(w) : (v, w) ∈ E

}))
,

where a, b represents the concatenation of strings a and b (using a separating
comma), {·} is a multiset, and r is a renaming function (see Shervashidze et al.
[14]). Based on this definition we denote with Gh = (V,E,Σ, λhG) the graph G
with WL labels of depth h. The edge labels remain unaffected in the sense that
λhG(e) = λ(e) for all h = 0, 1, . . . and all e ∈ E. Two small examples can be found
in Fig. 2.

Definition 1 (Label Patterns). For a labeled, undirected graph G we define
L(G) to be the set of all vertex labels of G.

The above definition implies that L(Gh) are the WL labels of depth h ≥ 0. Next,
cyclic and tree patterns correspond to the features defined by Horváth et. al. [8]
for the CPK.

Definition 2 (Cyclic Patterns). Given a labeled, undirected graph G we de-
fine S(G) to be the set of all simple cycles in G. Then C(G) denotes the set of
canonical representations3 of S(G).

That is, C(G) is equivalent to the set of simple cycles up to isomorphism. Hence,
if G contains two isomorphic cycles, there will be only one cyclic pattern repre-
senting the two. Similarly, the tree patterns of a graph are only considered up
to isomorphism.

3 See [8] for a definition of such a canonical representation



Definition 3 (Tree Patterns). Given a labeled, undirected graph G we define
T (G) to be the set of connected components of the forest that contains only the
bridges in G. Then, T (G) denotes the set of canonical representations of T (G).

We enhance the expressiveness of the tree patterns T (G) by computing shortest
paths between all pairs of vertices contained in the forest consisting of the bridges
in G. To regain connectivity inside the forest, we contract each biconnected
component to a single vertex and assign a fixed, unused label to each of those
fusion vertices. We call this newly derived tree representation of the original
graph contracted graph and define the shortest path patterns corresponding to
the SPK of Borgwardt et al. [3] as follows.

Definition 4 (Shortest Path Patterns). Given a labeled, undirected graph
G we define P (G) to be the set of shortest paths between all pairs of vertices in
the contracted graph of G. With P(G) we denote the canonical representations
of P (G).

Considering that a WL labeled graph Gh differs from its underlying original
graph G only with respect to the labels, we can apply the definitions of cyclic,
tree, and shortest path patterns to such graphs as well. This allows us to derive
even more detailed patterns C(Gh), T (Gh), P(Gh), and of course L(Gh) for
depths h greater than zero. With Φv : X → Rdv , v ∈ {C, T ,P,L}, we denote the
binary or counting feature representation of the respective patterns. In practice,
the feature space dimension dv depends on the the view v, the considered depth h,
and the graph dataset at hand. In Section 4 we will use the term (set) intersection
or (set) counting kernel when we refer to the linear kernel on binary or counting
feature vectors, respectively. Analogous to the WLK in [14] we define cumulative
pattern kernels and a non-cumulative version of them.

Definition 5 (Pattern Kernel). Let v ∈ {C, T ,P,L} be a graph pattern class
and Φv its binary or counting feature mapping. For two labeled, undirected graphs
G and G′ the cumulative pattern kernel khv of depth h is defined as

khv (G,G′) = 〈Φv(G0), Φv(G′0)〉+ · · ·+ 〈Φv(Gh), Φv(G′h)〉 , (3)

whereas the non-cumulative pattern kernel of depth h is just

khv (G,G′) = 〈Φv(Gh), Φv(G′h)〉 . (4)

Obviously, (3) is a generalization of the WLK and (4) is an instance of its
non-negatively weighted variant. Although we restrict to the linear view kernel
〈Φv(·), Φv(·)〉 in Definition 5 also other base kernels (compare WLK definition in
[14]) could be applied. For the sake of convenience we do not use extra indices for
cumulative/non-cumulative or intersection/counting kernels. This will be clear
from the context in the practical part below. Finally, we define the multi-pattern
kernel (MPK). Interestingly, with minor modifications the molecular fingerprint
ECFPx corresponds to the cumulative WL labels of a molecular graph up to
depth h = x/2.



Definition 6 (Multi-Pattern Kernel). We consider non-negative weights bv,
v ∈ {C, T ,P,L}. The multi-pattern kernel kMPK of two labeled, undirected
graphs G and G′ is defined as

kMPK(G,G′) =
∑

v∈{C,T ,P,L}

bv · khv
v (G,G′) , bv ≥ 0,

where the WL depth hv depends on the pattern v and khv
v can be a cumulative

or non-cumulative pattern kernel.

Now we want to investigate MPKs with multi-view kernel approaches in the
context of ligand affinity prediction.

4 Experiments

We provided a considerable number of representation variants for molecular
graphs that can be used as views for single- and multi-view kernel approaches
which themselves can be parameterized as well in several ways (regularization
and kernel type). At first, in the preliminary experiments we intend to extract
promising views or view combinations for the practical task of ligand affinity
prediction using only the single view regression methods SVR and RLSR. For
this purpose, the views are either individual graph pattern vectors or their con-
catenation. In a second step, we use the best patterns and check whether we can
take profit from multi-view kernel methods for regression. We will compare our
results with the performance of standard fingerprints.

Target P23946 Q99895 P09871 P25774 Q9Y5Y6

Number DS 1 DS 2 DS 3 DS 4 DS 5

Ligands 90 91 92 104 125

Range 5.4-8.9 2.7-8.0 4.8-9.0 4.3-9.8 4.0-10.1

Target P17655 P42574 P00740 P07384 P07339

Number DS 6 DS 7 DS 8 DS 9 DS 10

Ligands 128 133 171 189 197

Range 4.8-10.8 4.9-11.9 3.9-8.7 3.1-10.7 4.1-11.0

Target P08709 P43235 P00750 P07858 P29466

Number DS 11 DS 12 DS 13 DS 14 DS 15

Ligands 249 252 264 278 310

Range 3.9-9.5 3.9-11.5 2.2-9.5 3.0-10.5 3.1-9.8

Target P07711 P00747 P00749 P08246 P07477

Number DS 16 DS 17 DS 18 DS 19 DS 20

Ligands 357 474 600 742 986

Range 3.9-10.6 1.9-11.0 0.3-11.1 2.7-11.2 2.0-10.6

Table 1. Datasets with name, ordinal number, number of ligands, and label range.



Fig. 3. SVR and RLSR results for the intersection kernel.

4.1 Setup and Datasets

Our experiments will be performed on 20 datasets, each of which representing
ligands of one of 20 human proteins. A set contains between 90 and 986 ligands
of the respective protein gathered from BindingDB4. We ordered the protein
datasets according to the number of contained ligands and renamed them (see
Number in Table 1, DS = dataset). We divided the 20 datasets into two groups:
The first group, consisting of odd ordinal numbers, was used for preliminary and
parameter tuning experiments. The second group with even numbers was utilized
for the main experiments with multi-view kernel methods. Every ligand is a
single molecule in the sense of a connected graph and is labeled with its affinity
value (pKi = − log10Ki) towards the protein target. The ligands are given
in SMILES-format (Simplified Molecular Input Line Entry Specification) from
which the labeled graph structure can be deduced easily, e.g., with the chemistry
toolbox Open Babel5 and the structure data format (SDF). We introduced the
edge label aromatic by hand using a Hückel’s rule heuristic. Thus, for all ligands
in all datasets the binary and counting feature vectors for all pattern types up
to WL depth i = 6 and the standard molecular fingerprints Maccs and ECFP6
were available for our experiments.

We use the SMO-MKL software6 for efficient MKL that is based on lib-
SVM7 for both our MKL and SVR experiments. For LKRR we use our own
implementation of Algorithm 1 in [6]. For a learned predictor function f we re-

4 Binding database, https://www.bindingdb.org/bind/index.jsp
5 openbabel.org
6 Available at http://research.microsoft.com/en-us/um/people/manik/code/

smo-mkl/download.html
7 https://www.csie.ntu.edu.tw/~cjlin/libsvm/



Fig. 4. SVR and RLSR results for the counting kernel.

port root mean squared error RMSE(f) = 1√
m
‖Ytest − f(Xtest)‖2, i.e., the root

mean squared distance between the original label vector Ytest of m test instances
Xtest and the corresponding vector of prediction values Ypred = f(Xtest). In our
experiments we perform 5-fold cross validation. In every training and param-
eter tuning fold we randomly sample 80% training data and the remainder as
test instances. We use the linear kernel on binary and counting feature vec-
tors kv(G,G′) = 〈Φv(G), Φv(G′)〉. For the reason of calculation stability of the
used software, we normalized every kernel matrix initially with its Frobenius
matrix norm. For the parameters we chose C ∈ [50.0, 100.0] for all algorithms
and Λ = 1.0. The trade-off parameter C was generally chosen quite large during
the parameter tuning phase (which we account for the kernel normalization),
whereas all algorithms seemed to be almost insensible to the choice of Λ. Leaned
on the expert knowledge in chemoinformatics with affinity prediction (e.g., [1])
we used ε = 0.1.

4.2 Results

Preliminary Experiments: Initially, we considered the patterns cycles, trees,
shortest paths, and labels individually applying SVR and RLSR for the pre-
diction of ligand affinities. Therefore, we used a cumulative and non-cumulative
feature vector variant which we refer to with “cum. pattern” or “pattern”, re-
spectively. For the first variant, we use all features based on all WL depths up
to some depth h in a concatenated feature vector. For the second, we only use
features of a fixed depth h. The results can be found in Fig. 3 and 4. We report
the mean RMSE with respect to all datasets with odd numbers. We observe
that the qualitative performance trend is very similar for SVR and RLSR. Obvi-
ously, the non-cumulative patterns reach an optimal WL depth and decline for



greater depths. The cumulative ones appear to converge to the optimal perfor-
mance with increasing WL depth. Nevertheless, the best RMSE is very similar
for cumulative and non-cumulative patterns. In general, for the predictive task
at hand the performance of labels seems to be very high for an appropriate WL
depth, whereas for all WL depths the one for cycles is quite low.

Target A B C D E F

DS 2 1.039 1.004 1.010 1.007 1.000 0.995

DS 4 0.923 0.719 0.737 0.970 0.762 0.746

DS 6 1.052 0.906 0.915 1.063 0.903 0.812

DS 8 0.790 0.655 0.675 0.841 0.618 0.621

DS 10 0.897 0.726 0.755 1.083 0.906 0.914

DS 12 1.289 1.077 1.111 1.265 1.071 1.053

DS 14 1.254 1.048 1.078 1.271 1.073 1.033

DS 16 1.216 0.948 0.996 1.190 0.961 0.925

DS 18 1.068 0.820 0.834 1.073 0.842 0.801

DS 20 1.138 0.869 1.045 1.116 0.855 0.816

Table 2. RMSE for standard fingerprints. A: SVR with Maccs, B: SVR with ECFP6,
C: MKL with Maccs and ECFP6, D: RLSR with Maccs, E: RLSR with ECFP6, F:
LKRR with Maccs and ECFP6.

Fig. 5. Graphical visualization of main results for the counting kernel. Left: SVR/MKL
results from Table 4, columns A, B, G, H, I. Right: RLSR/LKRR results from Table
6, columns A, B, F, G, H.

As the information for individual datasets is not apparent in the diagrams of
Fig. 3 and 4 for each cumulative and non-cumulative pattern variant we chose
the best WL depth and extracted the performance for every dataset with odd



Target A B C D E F G H I

DS 2 1.028 1.056 1.100 1.084 1.071 1.095 1.088 1.107 1.101

DS 4 0.932 0.707 0.726 0.752 0.948 0.777 0.769 0.762 0.743

DS 6 1.068 0.894 0.842 0.882 1.041 0.891 0.864 0.881 0.860

DS 8 0.849 0.700 0.715 0.694 0.714 0.693 0.697 0.696 0.707

DS 10 0.935 0.744 0.747 0.757 0.819 0.742 0.752 0.740 0.745

DS 12 1.307 1.099 1.104 1.069 1.244 1.036 1.030 1.016 1.038

DS 14 1.261 1.102 0.931 0.956 1.118 0.932 0.899 0.913 0.917

DS 16 1.189 0.946 0.940 0.941 1.070 0.979 0.952 0.952 0.931

DS 18 1.103 0.846 0.869 0.838 0.804 0.784 0.785 0.787 0.832

DS 20 1.110 0.838 - 0.886 - - 0.834 0.751 0.718

Table 3. RMSE for SVR/MKL experiments with intersection kernel. A: SVR with
Maccs, B: SVR with ECFP6, C: SVR with cum. SPK h = 6, D: SVR with cum. WLK
h = 6, E: SVR with cum. CPK h = 6, F: MKL with best depth of all patterns, G: MKL
with best depth of all cum. patterns, H: MKL with best depths of 3 best patterns, I:
MKL with best depths of 2 best patterns, “-” algorithm did not converge.

number. We omit the results for reasons of space, but in essence they show the
same impact of the different pattern classes for individual datasets as for the
average over the datasets.

Main Experiments: At first, we tested whether we can already take profit from
multi-view approaches using standard molecular fingerprints only. The results
are presented in Table 2. We find that in the case of RLSR/LKRR there is a
performance improvement in favor of the multi-view algorithm. This cannot be
verified in the case of SVR/MKL as single-view SVR with fingerprint ECFP6
turns out to be the best method for all datasets. Subsequently, we investigated
whether we can take advantage of different graph pattern features in the multi-
view setting. Actually, there are too many pattern combinations to test all of
them in the scope of multi-view algorithms. Therefore, we chose the most promis-
ing combinations and depths from the preliminary experiments (with respect to
the RMSE) to compare them with baseline kernels and standard fingerprints.
The results are shown in Tables 3 to 6, as well as Fig. 5. In columns A and B
the single-view results with standard fingerprints are shown. The columns C to
E present the performance of the popular graph kernels SPK, WLK, and CPK,
each with its optimal depth taken from the preliminary experiments. Finally,
the columns F - I obtain the results for optimal multi-view combinations from
the preliminary experiments (see the respective table caption). In the case of
SVR/MKL experiments we observe that MKL approaches show the best perfor-
mances in 7 out of 10 cases (Table 3). If we utilize the counting kernel the MKL
approaches outperform the single-view SVR variants with standard molecular
fingerprints or standard graph kernels in the majority of cases (Table 4). In the
RLSR/LKRR scenario the multi-view approaches exhibit the lowest RMSE for
8 out of 10 or 7 out of 10 datasets when we apply the intersection or counting



Target A B C D E F G H I

DS 2 0.818 0.776 0.815 0.787 0.805 0.802 0.796 0.794 0.807

DS 4 0.930 0.673 0.675 0.691 0.894 0.728 0.725 0.706 0.718

DS 6 1.037 0.841 0.763 0.820 0.995 0.826 0.808 0.805 0.808

DS 8 0.837 0.751 0.785 0.761 0.781 0.775 0.764 0.788 0.776

DS 10 0.896 0.728 0.698 0.715 0.807 0.698 0.705 0.687 0.710

DS 12 1.231 0.991 0.993 0.973 1.212 1.007 0.981 0.984 0.978

DS 14 1.317 1.130 0.990 0.989 1.205 0.978 0.994 0.959 0.943

DS 16 1.142 0.891 0.860 0.886 1.008 0.912 0.904 0.902 0.917

DS 18 1.106 0.880 0.893 0.877 0.846 0.822 0.834 0.816 0.803

DS 20 1.142 0.868 - - - 0.767 0.833 0.797 0.814

Table 4. RMSE for SVR/MKL experiments with counting kernel. A: SVR with Maccs,
B: SVR with ECFP6, C: SVR with cum. SPK h = 5, D: SVR with cum. WLK h = 6,
E: SVR with cum. CPK h = 4, F: MKL with best depth of all patterns, G: MKL with
best depth of all cum. patterns, H: MKL with best depths of 3 best patterns, I: MKL
with best depths of 2 best patterns, “-” algorithm did not converge.

kernel, respectively (Tables 5 and 6). We observe that the single-view approaches
SVR and RLSR applying the standard graph kernel features of SPK, WLK, and
CPK outperform the other algorithms in very few cases. Most interestingly, the
more simple non-cumulative pattern combinations perform very well in compar-
ison to cumulative combinations, even if we do not lift all pattern types cycles,
trees, shortest paths, or labels, but rather only 2 or 3 of them. Apparently, it is
sufficient to use non-cumulative pattern combinations of few pattern types.

5 Conclusion

We considered the problem of ligand affinity prediction with a variety of dif-
ferent feature vectors representing small molecular compounds and compared
single- and multi-view regression approaches for this learning task. We showed
that one can profit from the application of linear combinations of multiple views
on molecular data in this practical scenario. It turned out that the multi-view
approaches based on structural features and neighborhood information outper-
form the SVR and RLSR algorithm using standard molecular fingerprints or
popular graph kernels. This effect was the more visible the greater the dataset
sizes were (see Fig. 5). During our experiments we observed that the application
of WL labels L and shortest path patterns P improved the prediction results
particularly. In general, the squared loss-approaches RLSR and LKRR achieved
better results than the analogue ε-insensitive loss algorithms SVR and MKL.
Hence, using combinations of graph patterns based on WL labels of appropriate
depths together with multi-view methods represents a noteworthy alternative to
the application of SVR and standard molecular fingerprints which is the state-
of-the-art approach for affinity prediction in the field of QSAR modeling.



Target A B C D E F G H I

DS 2 0.991 0.990 1.011 1.016 1.082 0.998 1.011 1.018 0.995

DS 4 0.966 0.839 0.827 0.879 1.039 0.807 0.815 0.797 0.774

DS 6 1.097 0.974 0.902 0.948 1.055 0.878 0.870 0.829 0.784

DS 8 0.820 0.678 0.715 0.684 0.741 0.669 0.688 0.667 0.689

DS 10 0.872 0.697 0.729 0.725 0.770 0.710 0.715 0.716 0.711

DS 12 1.175 1.028 1.000 0.985 1.210 0.976 0.973 0.954 0.931

DS 14 1.251 1.084 0.948 0.980 1.169 0.928 0.940 0.906 0.887

DS 16 1.186 0.958 0.933 0.952 1.088 0.918 0.910 0.901 0.881

DS 18 1.046 0.828 0.856 0.807 0.770 0.729 0.733 0.723 0.738

DS 20 1.160 0.888 0.810 0.890 0.961 0.764 0.767 0.753 0.742

Table 5. RMSE for RLSR/LKRR experiments with intersection kernel. A: RLSR with
Maccs, B: RLSR with ECFP6, C: RLSR with cum. SPK h = 4, D: RLSR with cum.
WLK h = 6, E: RLSR with cum. CPK h = 2, F: LKRR with best depth of all patterns,
G: LKRR with best depth of all cum. patterns, H: LKRR with best depths of 3 best
patterns, I: LKRR with best depths of 2 best patterns.
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