
Min-Hashing for Probabilistic Frequent Subtree
Feature Spaces

Pascal Welke1, Tamás Horváth1,2, and Stefan Wrobel1,2

1 Dept. of Computer Science, University of Bonn, Germany
2 Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany

Abstract. We propose a fast algorithm for approximating graph sim-
ilarities. For its advantageous semantic and algorithmic properties, we
define the similarity between two graphs by the Jaccard-similarity of
their images in a binary feature space spanned by the set of frequent
subtrees generated for some training dataset. Since the feature space
embedding is computationally intractable, we use a probabilistic subtree
isomorphism operator based on a small sample of random spanning trees
and approximate the Jaccard-similarity by min-hash sketches. The par-
tial order on the feature set defined by subgraph isomorphism allows for
a fast calculation of the min-hash sketch, without explicitly performing
the feature space embedding. Experimental results on real-world graph
datasets show that our technique results in a fast algorithm. Further-
more, the approximated similarities are well-suited for classification and
retrieval tasks in large graph datasets.

1 Introduction

A common paradigm in distance-based learning is to embed the instance space
into some appropriately chosen feature space equipped by a metric and to define
the dissimilarity between two instances by the distance of their images in the
feature space. In this work we deal with the special case of this paradigm that the
instances are vertex and edge labeled graphs (without any structural restriction),
the feature space is the set of vertices of the d-dimensional Hamming-cube (i.e.,
{0, 1}d) spanned by the elements of a feature set of cardinality d for some d > 0,
and the metric is defined by the Jaccard-distance. This problem class is valid
because any vertex of the d-dimensional Hamming-cube can be regarded as a
set over a universe of cardinality d.

The crucial step of the generic approach above is the appropriate choice of the
feature space. Indeed, the quality (e.g., predictive performance) of this method
applied to some particular problem strongly depends on the semantic relevance of
the features selected, implying that one might be interested in feature languages
of large expressive power. If, however, the features are arbitrary graph patterns
and the (binary) value of a pattern P on a graph G is defined by 1 if and only
if P is a subgraph of G then this approach suffers from severe computational
limitations. Indeed, even in the simple case that P is a path, it is NP-complete
to decide whether P is a subgraph of G (i.e., whether P is subgraph isomorphic



to G). This implies that the embedding of a graph into the feature space is
computationally intractable if the pattern size is not bounded by some constant.

Our goal in this paper is to use frequent subgraphs as features, without any
structural restriction on the graph class defining the instance space. This is mo-
tivated, among others, by the observation that frequent subgraph kernels [3] are
of remarkable predictive performance e.g. on the ligand-based virtual screen-
ing problem [5]. The features, i.e., the set of frequent subgraphs are generated
initially for a training set of graphs. To arrive at a practically fast algorithm,
we restrict the pattern language to trees. This restriction alone is, however,
not sufficient for a polynomial time algorithm for the following reasons: Min-
ing frequent subtrees from arbitrary graphs is computationally intractable [6]
and, as mentioned above, deciding subgraph isomorphism from a tree into a
graph is NP-complete. To overcome these computational limitations, we give up
the demand on the correctness of the pattern matching operator (i.e., subgraph
isomorphism). More precisely, for each training graph we first take a set of k
spanning trees generated uniformly at random, where k is some user specified
parameter, replace each training graph with the random forest obtained by the
vertex disjoint union of its k random spanning trees, and calculate finally the
set of frequent subtrees for this forest database for some user specified frequency
threshold. Clearly, the output of this probabilistic technique is always sound
(any tree found to be frequent by this algorithm is a frequent subtree with re-
spect to the original dataset), but incomplete (the algorithm may miss frequent
subtrees). Since frequent subtrees in forests can be generated with polynomial
delay [7], our frequent pattern generation algorithm runs in time polynomial in
the combined size of the training dataset D and the set of frequent subtrees
generated, as long as the number k of random spanning trees is bounded by a
polynomial of the size of D.

We follow a similar strategy for the embedding step: For an unseen graph G
and a frequent tree pattern T , we generate a set F of k random spanning trees of
G with the same method as for the frequent pattern mining algorithm and return
1 if T is subgraph isomorphic to F ; 0 otherwise. On the one hand, in this way we
decide subgraph isomorphism from a tree into a graph with one-sided error, as
only a negative answer may be erroneous, i.e., when T is subgraph isomorphic
to G but not to F . On the other hand, this subgraph isomorphism test with
one-sided error can be performed in polynomial time. In a recent paper [12],
we have empirically demonstrated that remarkable predictive performance can
be obtained by the method sketched above. We show in this paper that our
probabilistic algorithm decides subgraph isomorphism from T into G correctly
with high probability if k is chosen appropriately.

Though the method sketched above runs in polynomial time, it is still im-
practical for large graphs and/or massive graph datasets for the following rea-
sons: The fastest known algorithm for subtree isomorphism into forests runs in
O
(
n2.5/ log n

)
time [9]. Although this is polynomial, it is prohibited even for

datasets with a few hundred thousands of small graphs [12]. A second reason is
the high dimensionality of the feature space, resulting in practically infeasible



time and space complexity. Running time and memory can, however, be signif-
icantly reduced by using min-hashing [1], an elegant probabilistic technique for
the approximation of the Jaccard-similarity. Given a binary feature vector f and
a permutation π of f , the method is based on calculating the min-hash value
hπ(f), i.e., the position of the first occurrence of 1 in the permuted order of f .

For the feature set formed by the set of all paths up to a constant length, min-
hashing has already been applied for graph similarity estimation by performing
the embedding explicitly [11]. We show for the more general case of tree patterns
of arbitrary length that for a feature vector f and permutation π, hπ(f) can be
computed without calculating f . On the one hand, we can utilize the fact that we
are interested in the first occurrence of a 1 in the order of π; once we have found
it, we can stop the calculation, as all patterns after hπ(f) are irrelevant for min-
hashing. Beside this straightforward speed-up of the algorithm, the computation
of the min-hash can further be accelerated utilizing the facts that a tree pattern
T need not be evaluated if T or a subtree of T has already been considered for
this or another permutation. These facts allow us to define a linear order on the
patterns to be evaluated and to avoid redundant subtree isomorphism tests.

Our experimental results clearly demonstrate that using our technique, the
number of subtree isomorphism tests can dramatically be reduced with respect
to the min-hash algorithm performing the embedding explicitly. It is natural to
ask how the predictive performance of the approximate similarities compares to
the exact ones. We show that even for a few random spanning trees per chem-
ical compound, remarkable precisions of the active molecules can be obtained
by taking the k nearest neighbors of an active compound for k = 1, . . . , 100 and
that these precision values are close to those obtained by the full set of frequent
subtrees. In a second experimental setting, we analyze the predictive power of
support vector machines using our approximate similarities and show that it
compares to that of state-of-the-art related methods. The stability of our incom-
plete probabilistic technique is explained by the fact that a subtree generated
by our method is frequent not only with respect to the training set, but, with
high probability, also with respect to the set of spanning trees of a graph.

The rest of the paper is organized as follows. In Section 2 we collect the
necessary notions and sketch the min-hashing technique. In Section 3 we present
our algorithm for calculating min-hashing in probabilistic tree feature spaces. In
Section 4 we report our empirical results and conclude finally in Section 5 along
with mentioning some interesting problems for future work.

2 Notions

In this section we collect the necessary notions and fix the notation. The set
{1, . . . , n} will be denoted by [n] for all n ∈ N. The following basic concepts
from graph theory are standard (see, e.g., [4]). An undirected (resp. directed)
graph G is a pair (V,E), where V (vertex set) is a finite set and E (edge set)
is a subset of the family of 2-subsets of V (resp. E ⊆ V × V ). Unless otherwise
stated, by graphs we mean undirected graphs. An unrooted (or free) tree is a



connected graph that contains no cycle. For simplicity, we restrict the description
of our method to unlabeled graphs, by noting that all concepts can naturally be
generalized to labeled graphs.

Among the classical embedding (or pattern matching) operators, subgraph
isomorphism is the most widely used one in pattern mining. For this reason,
in the next section we will present our method for subgraph isomorphism and
discuss potential generalizations to other embedding operators in Section 5. Let
G1 = (V1, E1) and G2 = (V2, E2) be graphs. They are isomorphic if there exists
a bijection ϕ : V1 → V2 with {u, v} ∈ V1 if and only if {ϕ(u), ϕ(v)} ∈ V2 for
all u, v ∈ V1. G1 is subgraph isomorphic to G2, denoted G1 4 G2, if G2 has
a subgraph isomorphic to G1; G1 ≺ G2 denotes that G1 4 G2 and G1 is not
isomorphic to G2. It is a well-known fact that subgraph isomorphism is NP-
complete. This negative result holds even for the case that the patterns are
restricted to trees.

For any graph class H containing no two isomorphic graphs, (H,4) is a
poset. Since H will be finite for our case, we represent (H,4) by a directed
graph (H, E) with (H1, H2) ∈ E if and only if H1 4 H2 and there is no H ∈ H
with H1 ≺ H ≺ H2 for all H1, H2 ∈ H.

We will also use concepts and algorithms from frequent subgraph mining. For
any graph classH (the pattern class), finite setD of graphs, and for any frequency
threshold θ ∈ (0, 1], a pattern H ∈ H is frequent if |{G ∈ D : H 4 G}| ≥ θ|D|.
Given H, D, and θ, the problem of frequent subgraph mining is to generate
all patterns from H that are frequent. This listing problem is computationally
intractable [6]. It follows from the proof of this negative result that the problem
remains intractable if H is restricted to trees.3 If, however, D is restricted to
forests then frequent subgraphs (i.e., subtrees) can be generated with polynomial
delay [7].

We will measure the similarity between two graphs by the Jaccard-similarity
of their images in the Hamming-cube {0, 1}|F| spanned by the elements of some
finite feature set F . The binary feature vectors can then be regarded as the
characteristic vectors of subsets of F . Given two feature vectors f1 and f2

representing the sets S1 and S2, respectively, we define their similarity by the
Jaccard-similarity of S1 and S2, i.e., by

SimJaccard(f1,f2) := SimJaccard(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

with SimJaccard(∅, ∅) := 0 for the degenerate case. As long as the feature vectors
are low dimensional (i.e., |F| is small), the Jaccard-similarity can quickly be
calculated. If, however, they are high dimensional, it can be approximated with
the following fast probabilistic technique based on min-hashing [1]: For a per-
mutation π of F and feature vector f , define hπ(f) to be the index of the first

3 We note that the crucial property implying the negative complexity result in [6]
is not necessarily the intractability of subgraph isomorphism; there are cases when
efficient frequent subgraph mining is possible even for NP-hard pattern matching
operators [7].



entry with value 1 in the permuted order of f . One can show that the following
correspondence holds for the feature vectors f1 and f2 above (see [1] for the
details):

SimJaccard(S1, S2) = Pr [hπ(f1) = hπ(f2)] ,

where the probability is taken by selecting π uniformly at random from the set of
permutations of F . This allows for the following approximation of the Jaccard-
similarity between f1 and f2: Generate a set π1, . . . , πK of permutations of the
feature set uniformly at random and return K ′/K, where K ′ is the number of
permutations πi with hπi

(f1) = hπi
(f2). The approximation of the Jaccard-

distance with min-hashing results in a fast algorithm if the embedding into the
feature space can be computed quickly.

3 Efficient Min-Hash Sketch Computation

In this section we present our method for approximating the similarity between
two graphs. We define this similarity by the Jaccard-similarity of their binary
feature vectors for its advantageous semantic and algorithmic properties. The
underlying feature space is spanned by a certain set of frequent tree patterns
fixed in advance. More precisely, given a finite training set D of graphs and a
frequency threshold θ ∈ (0, 1], in a preprocessing step we first generate a subset F
of the set of frequent subtrees of D. Clearly, F is finite. It will span the Hamming
feature space {0, 1}|F| and serve as the universe for the Jaccard-similarity. Given
F and two graphs G1, G2, the similarity Sim(G1, G2) between G1 and G2 is then
defined by

Sim(G1, G2) := SimJaccard (f1,f2) ,

where fi is the characteristic vector of the set {T ∈ F : T 4 Gi}. The prepro-
cessing step and the above definition of similarity raise the following three com-
putational problems:

(P1) The Frequent Subtree Mining Problem: Given a finite set D of graphs and
a frequency threshold θ ∈ (0, 1], generate the set of all trees that are frequent
in D.

(P2) The Subtree Isomorphism Problem: Given a tree T and a graph G, decide
whether or not T 4 G.

(P3) Computing the Jaccard-similarity: Given two binary feature vectors f1

and f2 as defined above, compute SimJaccard(f1,f2).

Since we have no restrictions on D and G, problems (P1) and (P2) are compu-
tationally intractable. In particular, unless P = NP, the frequent subtree mining
problem cannot be solved in output polynomial time [6] and deciding whether a
tree is subgraph isomorphic to a graph is NP-complete. Regarding (P3), as |F|
is typically some large set, computing the Jaccard-similarity makes the above
algorithmic definition practically infeasible if a huge number of similarity queries
must be evaluated.



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Importance µ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
cl

us
io

n 
Pr

ob
ab

ili
ty

k=1

k=5

k=10

k=20

k=50

k=100

Fig. 1. The function 1− (1− µ)k for different values of k.

3.1 Probabilistic Tree Patterns

We first focus on problems (P1) and (P2). To overcome the complexity limita-
tions of these two problems, we follow our approach described in [12] and give
up the demand on the completeness of (P1) and on the correctness of the sub-
tree isomorphism test for (P2), and use the following probabilistic technique: We
replace each graph in D for problem (P1) and G for problem (P2) by a set of its
k spanning trees generated uniformly at random. For an empirical evaluation of
this method, the reader is referred to [12]; a probabilistic justification together
with an appropriate choice of k is given below. According to this probabilistic
technique, a tree T will be found as frequent in D (P1) if it is a subtree of at least
θ|D| forests, each formed by the vertex disjoint union of the k random spanning
trees. Similarly, T will be found to be subgraph isomorphic to G (P2) if T is
subgraph isomorphic to the forest of G formed by the vertex disjoint union of
the k random spanning trees generated for G.

Regarding (P1), the probabilistic technique above results in a sound, but
incomplete algorithm. Indeed, any tree found to be frequent by the mining al-
gorithm in the forest dataset obtained is a frequent tree in D, but we have no
guarantee that all frequent trees of D will be generated. Thus, our technique may
ignore frequent tree patterns. Regarding (P2), we decide subtree isomorphism
by one-sided error: If T is subgraph isomorphic to any of the k spanning trees of
G then T is subgraph isomorphic to G; otherwise T may or may not be subgraph
isomorphic to G.

The rationale behind our probabilistic technique is as follows. For a graph G,
let S(G) be the set of spanning trees of G. Let µ ∈ (0, 1]. A tree T is µ-important
in G if

|{S ∈ S(G) : T 4 S}|
|S(G)|

≥ µ .

Thus, the probability that a µ-important tree in G is subtree isomorphic to a
spanning tree of G generated uniformly at random is at least µ. Notice that



µ = 1 for any subtree of the forest formed by the set of bridges of G (i.e., by
the edges that do not belong to any cycle in G). Let Sk(G) denote a sample of
k spanning trees of G generated independently and uniformly at random. Then

Pr [∃S ∈ Sk(G) such that T 4 S] ≥ 1− (1− µ)k . (1)

The bound in (1) implies that for any graph G and µ-important tree pattern T
in G for some µ ∈ (0, 1], and for any δ ∈ (0, 1),

Pr [∃S ∈ Sk(G) such that T 4 S] ≥ 1− δ

whenever

k ≥ ln δ

ln(1− µ)

(see, also, Figure 1 for the function 1− (1− µ)k for different values of k). Thus,
if k is appropriately chosen, we have a probabilistic guarantee in terms of the
confidence parameter δ that all µ-important tree patterns will be considered
with high probability. As an example, we need less than 20 random spanning
trees to correctly process a 0.15-important tree pattern with probability at least
0.95. Clearly, a smaller value of µ results in a larger feature set.

3.2 Fast Min-Hashing for Tree Patterns

We now turn to problem (P3) of computing the Jaccard-similarity between two
binary feature vectors corresponding to the set F of tree patterns generated in
the preprocessing step. More precisely, given a set F of trees that index our full
feature space and two graphs G1, G2, we want to answer similarity queries of
the form Sim(G1, G2) by calculating SimJaccard(f1,f2), where f i is the binary
feature vector representing the set of trees from F that are subgraph isomorphic
to the forest formed by the vertex disjoint union of the k random spanning trees
generated for Gi (i = 1, 2). Instead of using the naive brute-force algorithm, i.e.,
calculating first the explicit embedding of Gi into the feature space and comput-
ing then the exact value of SimJaccard(f1,f2), we follow Broder’s probabilistic
min-hashing technique [1] sketched in Section 2.

Min-hashing was originally applied to text documents using q-shingles as
features (i.e., sequences of q contiguous tokens for some q ∈ N), implying that
one can calculate the explicit embedding in linear time by shifting a window
of size q through the document to be embedded. In contrast, a naive algorithm
embedding a graph with n vertices into the feature space corresponding to F
would require O

(
|F|n2.5/ log n

)
time by using the fastest subtree isomorphism

algorithm [9], which is practically infeasible for large-sized feature sets. Another
important difference between the two applications is that while the set of q-
shingles for text documents forms an anti-chain (i.e., the q-shingles are pairwise
incomparable), subgraph isomorphism induces a natural partial order on F . The
transitivity of subgraph isomorphism allows us to safely ignore features from F
that do not influence the outcome of min-hashing, resulting in a much faster
algorithm.



More precisely, in the preprocessing step, directly after the generation of F ,
we generate K random permutations π1, . . . , πK : F → [|F|] of F (see [2] for
the details) and fix them for computing the min-hash values that will be used
for similarity query evaluations (cf. Section 2). Since the computation of the
embeddings is the most expensive operation, we can allow preprocessing time and
space that is polynomial in the size of the pattern set F . Therefore, we explicitly
compute and store π1, . . . , πK , and do not apply any implicit representations of
them. This is particularly true, as we compute F explicitly in the preprocessing
step and spend time that is polynomial in F anyway.

For a graph G and permutation π of F , let

hπ(G) = argmin
T∈F

{π(T ) : T 4 G} .

The sketch of G with respect to π1, . . . , πK is then defined by

Sketchπ1,...,πK
(G) = (hπ1

(G), . . . , hπK
(G)) .4

The rest of this section is devoted to the following problem: Given π1, . . . , πK
and G as above, compute Sketchπ1,...,πK

(G). The first observation that leads
to an improved algorithm computing Sketchπ1,...,πK

(G) is that for any i ∈ [K],
πi may contain trees that can never be the first matching patterns according to
πi, for any query graph G. Indeed, suppose we have two patterns T1, T2 ∈ F
with T1 4 T2 and πi(T1) < πi(T2). Then, for any query graph G, either

1. T1 4 G and hence T2 cannot be the first matching pattern in πi or
2. T1 64 G and hence, by the transitivity of subgraph isomorphism, we have
T2 64 G as well.

For both cases, T2 will never be the first matching pattern according to πi and can
therefore be omitted from this permutation. Algorithm 1 implements this idea
for a single permutation π of F . The proof of the following result is immediate
from the remarks above:

Lemma 1. Let σ = 〈T1, . . . , Tl〉 be the output of Algorithm 1 for a permutation
π of F . Then, for any graph G,

hπ(G) = argmin
Ti∈σ

{i : Ti 4 G} .

Algorithm 1 runs in time O (|F|). Loop 5 can be implemented by a DFS that
does not recurse on the visited neighbors of a vertex. In this way, each edge of
F is visited exactly once during the algorithm.

We now turn to the computation of Sketchπ1,...,πK
(G). A straightforward

implementation of calculating Sketchπ1,...,πK
(G) for the evaluation sequences

4 In practice, we do not store the patterns in Sketchπ1,...,πK (G) explicitly. Instead,
we define some arbitrary total order on F and represent each pattern by its position
according to this order.



Input: directed graph F = (F , E) representing a poset (F ,4) and permutation π of
F

Output: evaluation sequence σ = 〈T1, . . . , Tl〉 ∈ F l for some 0 < l ≤ |F| with π(Ti) <
π(Tj) for all 1 ≤ i < j ≤ l

1: init σ := empty list
2: init visited(T ) := 0 for all T ∈ F
3: for all T ∈ F in the order of π do
4: if visited(T ) = 0 then
5: for all T ′ ∈ F (including T ) that are reachable from T in F do
6: set visited(T ′) := 1

7: append T to σ

8: return σ

Algorithm 1: Poset-Permutation-Shrink

σ1, . . . , σK computed by Algorithm 1 for π1, . . . , πK just loops through each
evaluation sequence, stopping each time the first match is encountered. This
strategy can further be improved by utilizing the fact that a pattern T may
be evaluated redundantly more than once for a graph G, if T occurs in more
than one permutation before or as the first match. Lemma 2 below formulates
necessary conditions for avoiding redundant subgraph isomorphism tests.

Lemma 2. Let G be a graph, F = (F , E) be a directed graph representing a
poset (F ,4), and let σ1, . . . , σK be the evaluation sequences computed by Algo-
rithm 1 for the permutations π1, . . . , πK of F . Let A be an algorithm that correctly
computes Sketchπ1,...,πK

(G) by evaluating subgraph isomorphism in the pattern
sequence Σ = 〈σ1[1], . . . , σK [1], σ1[2], . . . , σK [2], . . .〉. Then A remains correct if
for all i ∈ [K] and j ∈ [|σi|], it skips the evaluation of σi[j] 4 G whenever one
of the following conditions holds:

1. σi[j
′] 4 G for some j′ ∈ [j − 1],

2. there exists a pattern T before σi[j] in Σ such that σi[j] 4 T and T 4 G,
3. there exists a pattern T before σi[j] in Σ such that T 4 σi[j] and T 64 G.

Proof. If Condition 1 holds then the min-hash value for permutation πi has
already been determined. If σi[j] 4 T and T 4 G then σi[j] 4 G by the tran-
sitivity of subgraph isomorphism. For the same reason, if T 4 σi[j] and T 64 G
then σi[j] 64 G. Hence, if Condition 2 or 3 holds then A can infer the answer to
σi[j] 4 G without explicitly performing the subgraph isomorphism test.

Algorithm 2 computes the sketch for a graph G along the conditions formu-
lated in Lemma 2. It maintains a state for all T ∈ F defined as follows: 0 encodes
that T 4 G is unknown, 1 that T 4 G, and −1 that T 64 G.

Theorem 1. Algorithm 2 is correct, i.e., it returns Sketchπ1,...,πK
(G). Fur-

thermore, it is non-redundant, i.e., for all patterns T ∈ F , it evaluates at most
once whether or not T 4 G.



Input: graph G, directed graph F = (F , E) representing a poset (F ,4) and K
evaluation sequences σ1, . . . , σK computed by Algorithm 1 for the permutations
π1, . . . , πK of F

Output: Sketchπ1,...,πK (G)

1: init sketch := [⊥, . . . ,⊥]
2: init state(T ) := 0 for all T ∈ F
3: for i = 1 to |F| do
4: for j = 1 to K do
5: if |σj | ≥ i ∧ sketch[j] = ⊥ then
6: if state[σj [i]] 6= 0 then
7: if state[σj [i]] = 1 then sketch[j] = σj [i]

8: else if σj [i] 4 G then
9: sketch[j] = σj [i]

10: for all T ′ ∈ F (including T ) that can reach T in F do
11: set state(T ′) := 1

12: else
13: for all T ′ ∈ F (including T ) that are reachable from T in F do
14: set state(T ′) := −1

15: return sketch

Algorithm 2: Min-Hash Sketch

Proof. The correctness is immediate from Lemmas 1 and 2. Regarding non-
redundancy, suppose T 4 G has already been evaluated for some pattern T ∈ F
with T = σi[j]. Then, as T 4 T , for any σi′ [j

′] = T after σi[j] in Σ either
Condition 2 or 3 holds and hence T 4 G will never be evaluated again.

Once the sketches are computed for two graphs G1, G2, their Jaccard similar-
ity with respect to F can be approximated by the fraction of identical positions
in these sketches. (The similarity of G1 and G2 with Sketchπ1,...,πK

(G1) =
Sketchπ1,...,πK

(G2) = (⊥, . . . ,⊥) is defined by 0.)

4 Experimental Evaluation

We have conducted experiments on several real-world datasets. Since our method
is restricted to connected graphs, disconnected graphs have been omitted. To
obtain the feature sets of probabilistic tree patterns, we have applied the method
in [12] to a randomly sampled subset of 10% of the graphs in each dataset. We
have restricted the maximum size of a tree pattern to 10 vertices, as this bound
seemed optimal for the predictive/ranking performance for all chemical datasets
used in our experiments by noting that our method is not restricted to constant-
sized tree patterns. The same observation is reported in [11]. We have empirically
investigated (i) the speed measured by the number of subtree isomorphism tests
performed, (ii) the quality of our method for the retrieval of positive molecules
in the highly skewed NCI-HIV dataset, and (iii) the predictive performance of
support vector machines using a kernel function based on similarity measure.



Datasets: We have used the chemical graph datasets MUTAG, PTC, DD, NCI1,
and NCI109 obtained from http://www.di.ens.fr/~shervashidze/, and NCI-
HIV from https://cactus.nci.nih.gov/. MUTAG is a dataset of 188 con-
nected compounds labeled according to their mutagenic effect on Salmonella
typhimurium. PTC contains 344 connected molecular graphs, labeled according
to the carcinogenicity in mice and rats. DD consists of 1, 187 protein struc-
tures, of which 1, 157 are connected. Labels differentiate between enzymes and
non-enzymes. NCI1 and NCI109 contain 4, 110 resp. 4, 127 compounds of which
3, 530 resp. 3, 519 are connected. Both are balanced sets of chemical molecules la-
beled according to their activity against non-small cell lung cancer (resp. ovarian
cancer) cell lines. NCI-HIV consists of 42, 687 compounds of which 39, 337 are
connected. The molecules are annotated with their activity against the human
immunodeficiency virus (HIV). In particular, they are labeled by “active” (A),
“moderately active” (M), or “inactive” (I). While the first five datasets have a
balanced class distribution, the class distribution of NCI-HIV is heavily skewed:
Only 329 molecules (i.e., less than 1%) are in class A, 906 in class M, and the
remaining 38, 102 in class I.

Before going into the details, we first note that the similarities obtained by
our method approximate the exact Jaccard-similarities quite closely on average.
On a sample of roughly 1,500 graphs from the NCI-HIV dataset, the exact
Jaccard similarities based on the full set of frequent trees and the similarities
based on our min-hashing method showed a mean-squared-error of at most 0.005
for sketch size K = 32 and for an average Jaccard-similarity of 0.1396. For space
limitations, we omit a detailed discussion of these results.

4.1 Speed-Up

The main goal of our method is to reduce the number of subgraph isomorphism
tests during the computation of the min-hash sketch for a graph. We now show
the effectiveness of our method from this aspect. To this end, we have compared
our method given in Algorithm 2 not only with the brute-force explicit embed-
ding, but also with the following naive embedding algorithm utilizing the partial
order on the feature set F : Given the poset (F ,4) as a directed graph F and
a graph G, we traverse F starting at the vertices with in-degree 0. If a pattern
T does not match G, we prune away all patterns reachable from T in F . In this
way, we obtain the complete feature set of G with respect to F and compute
the min-hash sketch accordingly. It is important to note that our algorithm may
perform more subgraph isomorphism tests than the naive algorithm; this is due
to the fact that, in contrast to the naive algorithm, we do not traverse F sys-
tematically. We leave a detailed discussion for the long version of this paper.
We have compared our algorithm also with the naive method above in terms of
the number of subgraph isomorphism tests performed. Table 1 shows the aver-
age number of subtree isomorphism tests per graph together with the pattern
set size, for different datasets and parameters. The last four columns are the
results of our algorithm for sketch size K = 32, 64, 128, 256, respectively. It can
be seen that our algorithm (MH32–MH256) performs dramatically less subtree

http://www.di.ens.fr/~shervashidze/
https://cactus.nci.nih.gov/


Dataset k θ |F| naive MH32 MH64 MH128 MH256

MUTAG 5 10% 452 206.38 49.93 68.24 96.12 127.42
MUTAG 10 10% 543 244.11 42.77 63.77 90.57 125.39
MUTAG 15 10% 562 254.86 45.39 65.96 94.87 133.91
MUTAG 20 10% 573 260.18 55.34 76.32 105.15 135.11

PTC 5 10% 1,430 321.04 70.07 102.62 121.12 156.12
PTC 5 1% 9,619 734.79 236.31 327.27 475.35 611.92
PTC 10 10% 1,566 354.20 79.63 108.59 109.44 147.91
PTC 20 10% 1,712 376.65 17.60 25.81 31.49 39.62

DD 5 10% 8,111 3,547.22 260.47 486.09 846.09 1,374.76
DD 10 10% 18,137 6,670.93 317.82 568.23 1,072.58 1,936.42
DD 20 10% 33,100 11,005.49 344.59 653.66 1,242.03 2,190.15

NCI1 5 10% 1,819 431.19 89.12 137.75 185.22 221.21
NCI1 5 1% 21,306 900.68 615.62 920.17 1,227.52 1,378.18
NCI1 20 10% 2,441 557.70 115.07 183.54 220.14 255.58

NCI109 5 10% 2,182 462.62 115.62 170.43 206.23 254.70
NCI109 5 1% 19,099 886.06 532.38 727.15 1057.18 1,348.27
NCI109 20 10% 2,907 598.36 110.42 175.76 226.07 284.92

Table 1. Average number of subtree isomorphism test per graph for several datasets
with varying number k of sampled spanning trees and frequency thresholds θ. The
table reports |F| and the average number of subtree isomorphism tests evaluated by
the naive method and by Algorithm 2 for K = 32, 64, 128, 256 (last four columns).

isomorphism tests than the brute-force one requiring |F| and outperforms also
the naive algorithm in almost all cases. For example, on DD for k = 10 and
θ = 10%, the naive algorithm evaluates subtree isomorphism for 11,006 patterns
per graph on average, which is roughly one third of the total pattern set (|F|),
while our method evaluates subtree isomorphism 345 times on average for sketch
size 32, ranging up to 2190 times for sketch size 256. In general, the naive al-
gorithm performs 4 (resp. 1.7) times as many subtree isomorphism tests as our
method for K = 32 (resp. K = 256). This is a significant improvement in light
of the speed O

(
n2.5/ log n

)
of the fastest subtree isomorphism algorithm [9].

4.2 Positive Instance Retrieval

In this section we evaluate the performance of our approach in terms of preci-
sion for retrieving similar molecules for a given active compound in the NCI-HIV
dataset. We use a simple setup to evaluate the quality of the min-hash based sim-
ilarity in comparison to the exact Jaccard similarity as well as to the similarities
obtained by the path min-hash kernel [11].

For each molecule of class A (i.e., “active”), we retrieve its i nearest neigh-
bors (excluding the molecule itself) from the dataset and take the fraction of the
neighbors of class A. This measure is known in the Information Retrieval commu-
nity as precision at i. As a baseline, a random subset of molecules from NCI-HIV
is expected to contain less than 1% of active molecules due to the highly skewed



0 20 40 60 80 100
Number of Neighbors i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e 

Pr
ec

is
io

n path min-hash
Exact Jaccard θ=10% k=5

MH64 θ=10% k=5

MH64 θ=10% k=20

MH64 θ=0.5% k=5

MH64 θ=0.5% k=20

Fig. 2. Average fraction of “active” molecules among the i nearest neighbors of positive
molecules in NCI-HIV dataset for path min-hash [11], exact Jaccard-similarity for
frequent probabilistic tree patterns, and for our method with K = 64.

class distribution. In contrast, all methods show a drastically higher precision
for the closest up to 100 neighbors on average.

Figure 2 shows the average precision at i (taken over all 329 active molecules)
for i ranging from 1 to 100. The number k of sampled spanning trees per graph,
as well as the frequency threshold θ has a strong influence on the quality of our
method. To obtain our results, we have sampled 5 (resp. 20) spanning trees for
each graph and used a random sample of 4, 000 graphs to obtain pattern sets
for thresholds θ = 10% and θ = 0.5% respectively. We plot the min-hash-based
precision for the four feature sets obtained in this way by our algorithm as a
function of i for sketch size K = 64. We have compared this to the precision
obtained by the exact Jaccard-similarity for θ = 10% and k = 5 as well as to the
precision obtained by path min-hash [11], both for the same sketch size K = 64.

The average precision obtained by using the exact Jaccard-similarities is
slightly better than that of path min-hash. While our method performs com-
parably to path min-hash for θ = 0.5% and k = 5, for θ = 0.5% and k = 20
spanning trees it outperforms all other methods.

We were able to compute the precisions for the exact Jaccard-similarity nei-
ther for θ = 1% nor for k = 20 sampled spanning trees. The Python implementa-
tion we used to calculate the similarity computations for exact Jaccard-similarity
was not able to deal with the high dimensionality of the feature space, indepen-
dently of the sparsity of the feature vectors. This indicates that the space re-
quired to compute the Jaccard-similarity is crucial for high-dimensional feature
spaces.

4.3 Predictive Performance

In this section we empirically analyze the predictive performance of our method.
The Jaccard-similarity induces a positive semi-definite kernel on sets, also known
as a special case of the Tanimoto kernel (see, e.g., [8]). Interestingly, its approx-
imation based on min-hashing is a kernel as well. Hence, we can use the tree



pattern sets, resp. the min-hash sketches together with these two kernels in a
support vector machine to learn a classifier. We have used 5-fold cross-validation
and report the average area under the ROC curve obtained for the datasets MU-
TAG, PTC, DD, NCI1, and NCI109. We omit the results with NCI-HIV because
LibSVM was unable to process the Gram matrix for this dataset. We note, how-
ever, that our algorithm required less than 10 (resp. 26) minutes for sketch size
K = 32 (resp. K = 256) for computing the Gram matrix for the full set of
NCI-HIV, while this time was 5.5 hours for the exact Jaccard-similarity. The
runtimes of the preprocessing step (3 minutes) are not counted for both cases.

To this end, we have fixed the number of random spanning trees per graph
to k = 5 (resp. k = 20) and sampled 10% of the graphs in a dataset to obtain
the probabilistic frequent subtree patterns of up to 10 vertices. We report the
results for the frequency threshold of θ = 10% for our min-hash method (MH*)
with sketch sizes K varying between 32 and 256, as well as for the exact Jaccard
similarity (Jaccard) based on the same feature set. A lower frequency threshold
is practically unreasonable e.g. for MUTAG, as it contains only 188 compounds.
We have compared the results obtained with our previous results in [12] that
use a radial basis function kernel on the probabilistic subtree features (PSK)
and with the frequent subgraph kernel (FSG) [3] using the full set of frequent
connected subgraphs of up to 10 vertices with respect to the full datasets (i.e., not
only for a sample of 10%). We also report results of the Hash Kernel (HK) [10],
which uses count-min sketching on sampled induced subgraphs up to size 9 to
answer similarity queries.

Table 2 shows the results for frequency threshold θ = 10% and k = 5 sampled
spanning trees per graph. Jaccard and MH256 outperform PSK and even FSG
on all datasets. On all datasets, except for PTC, the quality increases with the
sketch size K. While HK is the best by a comfortable margin on MUTAG, the
contrary is true for MH256, PSK, and Jaccard on DD. Most notably, MH usually
outperforms PSK even for smaller sketch sizes and in many cases even the full
frequent subgraph kernel FSG, while still being computable on DD, which has
an enormous number of frequent patterns (compare Sec. 4.1). Note that the full
datasets were used to generate the feature sets for PSK and FSG.

We also conducted experiments for k = 20 sampled spanning trees. For iden-
tical frequency threshold, the AUC improved by 3% on MUTAG, while only
slightly changing for the other datasets.

5 Concluding Remarks

Algorithms 1 and 2 computing the min-hash sketches for a given tree pattern
set and for subtree isomorphism can easily be adapted to any finite pattern set
and pattern matching operator (e.g., homomorphism) if the pattern matching
operator induces a pre-order on the pattern set. While the number of evaluations
of the pattern matching operator can drastically be reduced in this way, the
complexity of the algorithm depends on that of the pattern matching operator.

The one-sided error of our probabilistic subtree isomorphism test seems to
have no significant effect on the experimental results. This raises the question



θ Method MUTAG PTC DD NCI1 NCI109

10% MH32 87.84 58.97 77.58 77.36 77.48
10% MH64 87.73 58.68 79.91 78.04 79.54
10% MH128 87.59 56.97 82.07 79.94 79.94
10% MH256 87.78 57.18 83.58 80.76 81.72
10% Jaccard 89.04 57.72 85.38 82.28 82.41
10% PSK 84.22 54.17 84.67 79.09 78.05
10% FSG 87.34 56.76 82.20 81.66 81.55

HK 93.00 62.70 81.00 n/a n/a

Table 2. AUC values for our method (MH) for sketch sizes K = 32, 64, 128, 256,
k = 5 spanning trees per graph, and frequency threshold θ = 10% to obtain the feature
set. “n/a” indicates that the autors of [10] did not provide results for the respective
datasets.

whether we can further relax the correctness of subtree isomorphism obtaining
an algorithm that runs in at most subquadratic time without any significant
negative effect on the predictive/retrieval performance.

References

1. A. Z. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

2. A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise inde-
pendent permutations. J. Comput. Syst. Sci., 60(3):630–659, 2000.

3. M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent substructure-
based approaches for classifying chemical compounds. Trans. on Knowl. and Data
Eng., 17(8):1036–1050, 2005.

4. R. Diestel. Graph Theory, volume 173. Springer, 2012.
5. H. Geppert, T. Horváth, T. Gärtner, S. Wrobel, and J. Bajorath. Support-vector-

machine-based ranking significantly improves the effectiveness of similarity search-
ing using 2d fingerprints and multiple reference compounds. Journal of Chemical
Information and Modeling, 48(4):742–746, 2008.

6. T. Horváth, B. Bringmann, and L. D. Raedt. Frequent hypergraph mining. In
Inductive Logic Programming, 16th Intern. Conf., ILP 2006, pages 244–259, 2006.

7. T. Horváth and J. Ramon. Efficient frequent connected subgraph mining in graphs
of bounded tree-width. Theor. Comput. Sci., 411(31-33):2784–2797, 2010.

8. L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical
informatics. Neural Networks, 18(8):1093–1110, 2005.

9. R. Shamir and D. Tsur. Faster subtree isomorphism. In Theory of Computing and
Systems, 1997, pages 126–131. IEEE, 1997.

10. Q. Shi, J. Petterson, G. Dror, J. Langford, A. J. Smola, and S. V. N. Vishwanathan.
Hash kernels for structured data. J. Mach. Learn. Res., 10:2615–2637, 2009.

11. C. H. C. Teixeira, A. Silva, and W. M. Jr. Min-hash fingerprints for graph kernels:
A trade-off among accuracy, efficiency, and compression. JIDM, 3(3):227–242,
2012.

12. P. Welke, T. Horváth, and S. Wrobel. Probabilistic frequent subtree kernels. In
NFMCP 2015, Springer LNCS 9607, pages 179–193, 2015.


	Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

