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Abstract—In this paper, we study a 3-hop approach to dis-
tance estimation that uses two intermediate landmarks, where
each landmark only stores distances to vertices in its local
neighborhood and to the other landmarks. We show how to
suitably represent and compress the distance data stored for each
landmark, for the 2-hop and 3-hop case. Overall, we find that
3-hop methods achieve modest but promising improvement in
some cases, while being comparable or slightly worse than 2-hop
methods in others. Furthermore, our light compression schemes
improve the practical applicability of both the 2-hop and 3-hop
methods.
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I. INTRODUCTION

Graphs constitute the central form of knowledge representa-
tion in a wide variety of domains; important examples include
social networks, road networks, web graphs, and molecular
interaction graphs. One important primitive encountered in
many graph mining and search applications involves pairwise
distances: given two vertices, determine the length of a shortest
connecting path. In many applications, traversing the graph at
runtime to find a shortest path is too slow, while precomputing
distances between all pairs requires too much memory.

In many applications, it suffices to have a good estimate
of the distance, since this distance is often just a rough
proxy for the similarity or relatedness of two nodes (e.g., in
expert search in social networks, or search in web graphs)
and may be used as one of many features in ranking. For
this reason, many researchers have studied how to estimate
pairwise distances, which allows for much faster and more
space efficient solutions than the exact case. Most of the
approaches are heuristic in nature, and are engineered to work
well for specific graphs and query loads. In particular, social
graphs tend to have certain properties, such as highly skewed
degree distributions that follow a power law, high clustering
coefficients, and small diameters. Many of the queries issued
in social applications tend to be for pairs of nodes that have
smaller than average distance. Thus, methods developed for
such graphs may not work well on other types of graphs or
query loads, and often do not have good worst-case bounds.

Probably the most commonly studied and used approach for
distance estimation is based on the idea of global landmarks,
which are designated vertices that store their distance from
all other nodes in an undirected graph. Given a landmark w,
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the distance d(u, v) between any nodes u and v can be upper-
bounded by d(u,w)+d(v, w) using the triangle inequality; the
best approximation is then obtained by taking the minimum
over all landmarks.

The precision of this estimate depends on the number of
landmarks as well as their selection strategy; the best land-
marks are those that are on, or close to, shortest paths between
many pairs u and v. If u and v are often close to each other,
then it is necessary to have landmarks in many neighborhoods
of the graph. Unfortunately, this two-hop approach does not
scale well as the graph size increases. This is because for
larger graphs, we need more and more landmarks to get
good estimates, resulting in total space requirements that are
super-linear in the number of vertices. Conversely, if we are
restricted to space linear in the number of vertices, then this
limits us to a fixed number of landmarks independent of graph
size, leading to increasingly bad estimates.

In this paper, we study a three-hop approach that obtains
estimates via two intermediate landmark nodes, and that can
support a larger number of landmarks in linear space. Our
methodology is based on a technique described by Bast et
al. [1] in the context of road networks, where they apply
the above method in a multi-layered fashion to obtain exact
shortest paths, not just distance estimates. In contrast, here we
engineer this method to suit the properties of social graphs.

The basic idea is very simple: we choose a set of landmarks,
and then precompute and store for each landmark its distance
from all other landmarks. In addition, for each node we store
its distance to a limited number of carefully selected close-by
landmarks. Given two nodes u and v, we can then upper-bound
d(u, v) by d(u,w1)+ d(w1, w2)+ d(w2, v) where w1 and w2

are any landmarks for which d(u,w1) and d(v, w2) have been
stored. The best estimate is obtained by taking the smallest
bound over all possible choices of w1 and w2.

This approach raises a number of questions that need to be
explored. First, we need suitable schemes to select three-hop
landmarks, and to choose for which close-by landmarks each
node should store distances. Second, we need to show that
three-hop methods actually do better. While three-hop methods
can store O(

√
n) landmarks in contrast to O(1) landmarks

for the two-hop method, given space linear in the number
of vertices n, this does not directly imply better estimates.
Three-hop methods might incur larger estimation errors than
two-hop methods that use a single application of the triangle
inequality, potentially canceling out any benefits due to having



more landmarks. Finally, given the different structure of two-
hop and three-hop methods, we need to decide how to best
store and encode the distance data. Simply assuming that each
distance costs a fixed number of bits (say one 32-bit int)
would not result in a fair comparison of the approaches: In
practical settings the absolute space consumption of the data
structures versus estimation quality counts and each method
should use the available space in an efficient manner. This
includes compressing the data structures in a way that allows
fast answering of arbitrary distance queries to allow for more
stored information in a given amount of space.

In the remainder of this paper, we address these questions.
We evaluate several strategies for selecting three-hop land-
marks, including centrality and degree. We also study how
to select which landmarks a vertex should store distances to.
While our baseline simply selects the k closest landmarks for
each vertex, we show how to select a better set of landmarks
such that no landmark obscures (i.e., is on the shortest path
to) another landmark. We then study how to reduce the
space consumption of the methods, by exploring compression
methods for landmark distance tables. The resulting methods
benefit both two-hop and three-hop schemes, and enable a
fair comparison that gives each method the same amount
of space. Overall, our main technical contributions are as
follows: (1) We describe a three-hop approach for distance
estimation in graphs that provides improvements in precision
in many scenarios. (2) We reevaluate existing methods for
landmark selection in the case of three-hop methods. (3) We
show how to store and compress the main data structures
used in two-hop and three-hop schemes. (4) We run extensive
experiments comparing two-hop and three-hop methods in
terms of estimation accuracy, efficiency, and scalability on a
number of data sets and query load, showing both strengths
and weaknesses of the approach.

Section II discusses related work, and Section III formally
states the problem and describes the two-hop approach. Then
Section IV introduces our three-hop approach and Section V
discusses compression. The experimental evaluation is pro-
vided in Section VI, and finally Section VII concludes.

II. RELATED WORK

There are three classes of previous work that are closely
related to our work, exact distance computation, distance
estimation in graphs, and graph compression.

A. Exact Distance Computation

The state of the art in point-to-point shortest path (PPSP)
computation are ALT algorithms [2], [3], [4], [5], which
combine a bidirectional version of Dijkstra’s algorithm with
an A∗ search guided by lower bounds. In most common
scenarios, this succeeds in reducing the search space for the
shortest path to a small subgraph, thus significantly improving
efficiency over unidirectional or bidirectional versions of Dijk-
stra’s algorithm. Most of the literature on ALT algorithms [2],
[3], [4] has focused on road networks, which tend to have
properties such as near planarity, low degree, and the presence

of hierarchy, that benefit these algorithms. However, they often
do not perform well on social networks, web graphs, or co-
authorship networks, which do not exhibit these properties.

The most closely related previous work [1] computes exact
distances in road networks using an idea similar to ours:
It defines a locality relation for pairs of vertices and uses
online shortest path computations for local query pairs. “Long
distance” queries are answered using a three-hop data structure
that must retrieve the exact distance for any such pair. They
give two implementations of this idea that are tailored to road
networks and extend it by recursively applying the scheme
(resulting in a k-hop technique for k ≥ 2). In contrast, our
method answers all distance queries approximately using a
three-hop data structure, due to the fact that almost all distance
queries would be “local” in a social graph, resulting in too
many online path computations for the approach in [1].

Other recent work [6], [7] also achieves faster exact distance
computation, but at the cost of often very significant storage
overheads that depends on the structure of the graph.

B. Distance Estimation

One basic approach uses embedding methods [8], [9],
[10], [11], [12], [13], where graphs are mapped to low-
dimensional vector spaces with efficiently computable distance
functions that approximate distances in the original graph
within guaranteed bounds. Another line of work approximates
the graph by sparse subgraphs called spanner graphs [14],
[15], [16]. Both approaches can provide provable bounds
on space requirements and the quality of the approximation.
However, most methods are difficult to implement, and no
empirical evaluation is given. Our methods here do not provide
theoretical guarantees, but they are simple to implement and
work well in practice in terms of their approximation error
and space consumption on common classes of graphs.
Landmark-Based Methods: The most widely used heuristic
approach is based on global landmarks [17], [18], [19], [20],
[21], [22], which are subsets of the nodes for which we
store distances to all other, or in some cases some selected
other, nodes. Given a query, we can then apply the triangle
inequality on these precomputed distances to get upper and
lower bounds on the exact distance. While most work has
focused on upper bounds, there has also been some study of
lower bounds [2], [3], [4], [19], [21]. However, lower bounds
obtained from landmarks tend to have a much larger error than
upper bounds [19]. Landmark-based methods can be divided
into two main categories.

Global landmark approaches, which can also be seen as
embedding techniques, store distances between each landmark
and all other nodes. Although theoretic guarantees on the
quality of most obtained distance estimates for randomly
selected landmarks are possible [22], much accuracy can
be gained in practice by selecting landmarks more carefully
based on centrality measures [19]. This significantly reduces
estimation errors for a given amount of space, but may result
in redundancies between different landmarks. Hence [18] sug-
gest an alternative greedy algorithm that considers a graph’s



“coverage” by landmarks, and an algorithm that first partitions
a graph and then chooses good landmarks for each partition.
Recent work shows how to obtain machine-learned estimates
based on landmarks [23].

Local landmark approaches store for each landmark only the
distances to a subset of close-by nodes. A multilevel sampling
approach to select landmarks, where each level only stores
distances to nodes that are within a certain distance from the
landmarks is presented in [16]. Any graph can be preprocessed
in O(k · |E| · |V |1/k) expected time to produce landmark
distance data of size O(k·|V |1+(1/k)), for any constant number
of levels k ≥ 1. Using these sketches, any point-to-point
query can be answered in O(k) time to provide a (2k − 1)-
approximation of the correct distance. The work in [16] can
be simplified [21], allowing for an easier implementation
while retaining theoretical guarantees. In practice the obtained
estimation errors are usually much better than the theoretical
guarantees [21], but significantly larger than the best global
landmark methods using the same space [23].

Finally, a closely related problem is how to compute actual
approximate shortest paths, not just estimate their lengths, us-
ing landmarks [20], [24]. There is also some loosely related but
different work in the database community on query processing
for reachability queries in graphs [25], [26], [27], [28].

Our work can be seen as a combination of ideas from
the global and local landmark approaches. Our landmarks
store distances to all other landmarks, but only to those non-
landmark nodes that are close by. While almost all global and
local landmark approaches use two hops, we use three hops,
following the work in [1].

C. Graph Representation and Compression

We focus on how to best represent and compress distance
data in landmark approaches, which started when we realized
that a fair comparison to other methods requires an exploration
of this issue. To the best of our knowledge, ours is the first
work considering how to compress landmark-related data.
There is, however, a significant amount of related work on
graph compression in the data compression and web search
literature, including work on compressing web graphs [29],
[30], [31], [32], [33], [34], [35] and social graphs [35], [36],
[37], [38]. The proposed techniques exploit vertex similarities,
edge locality, and many other structural properties of the
graphs for better compression. One very common idea is to
store the adjacency list of one vertex as a delta with respect
to that of another close-by or similar vertex, and then apply
further compression using, e.g., variable length or run-length
encodings. We apply similar ideas in our approach.

III. PRELIMINARIES

Throughout this paper, G denotes an undirected graph
where V is the set of vertices and E the set of edges.
Unless stated otherwise, we assume graphs to be simple,
connected, unweighted, and free of self-loops. A path P
connecting two nodes vi and vj is an acyclic sequence of edges
[(vi, vu), (vu, vw), (vw, vx), . . . , (vz, vj)]. Its length l(P ) :=

|P | is the number of edges in the sequence. The distance
d(vi, vj) is the minimum length of any path connecting vi
and vj . In a weighted graph, every edge (vi, vj) has a weight
c(vi, vj) ∈ R+, and the length of a path P is defined as the
sum of edge weights.

A. Problem Definition

In this work we address the following problem: Given an
undirected graph G, compute a data structure of size O(|V |+
|E|) that allows fast approximate answers to distance queries
for arbitrary pairs of vertices vi, vj ∈ V . In particular, we want
space to be linear with a small constant, i.e., not significantly
larger than the original graph, and the time for estimations to
be constant or at least significantly faster than linear.

B. Two-Hop Distance Estimation using Landmarks

One solution to the above problem are global landmarks,
which we shall call two-hop landmarks. This approach selects
a set of nodes L ⊂ V as landmarks and stores for each
node in V its distance to every node in L, resulting in a
storage cost of O(|V | · |L|). To determine these distances
during preprocessing, we execute a BFS from each landmark,
requiring time O(|L| · (|V | + |E|)). We will describe below
how to select the landmarks.

By the triangle inequality, the distance between any nodes
vi and vj is upper-bounded by minl∈L d(vi, l) + d(l, vj), and
also lower-bounded by maxl∈L|d(vi, l) − d(l, vj)|. We focus
here on upper bounds, which tend to be much closer to the
real answer than lower bounds [19]. Given a query, we can
thus return an upper bound in time O(|L|), by performing two
lookups for each landmark.

C. Landmark Selection

Both the two- and three-hop approach require a set of global
landmarks L. Optimal selection of landmarks for two-hop
methods is known to be NP-hard, and various greedy heuristics
have been proposed [19]. These algorithms usually impose
an ordering on the set of nodes, and then select the top-
|L| nodes as landmarks. We consider the following methods:
Random Order; Degree, which is believed to indicate an
improved chance to be on many shortest paths; Closeness,
measuring the inverse of the distances from the particular
node to all other node; Betweenness, the number of shortest
paths passing through a vertex; and Greedy Coverage, which
successively selects landmarks that connect to the largest
fraction of the remaining graph and then removes them and
their neighbors [18]. For the two-hop approach, Betweenness
clearly outperforms all other methods, whereas Random Order
is very weak [19]. However, Betweenness as well as Closeness
are expensive to compute, a drawback that can be remedied
by sampling. Section VI experimentally evaluates their perfor-
mance for three-hop landmark selection.

IV. THE THREE-HOP APPROACH

We now introduce our three-hop approach to distance esti-
mation. Recall that the two-hop approach stores distances from



every node to every landmark. However, many of these stored
distances never contribute by being part of the minimal upper
bound of any distance estimate. Our three-hop approach tries
to remove these unnecessary stored distances. This is of course
also the motivation for the local two-hop approach in [21],
[16], but as shown in [23] this does not come close to the
best global schemes. Our approach stores distances between
every pair of landmarks, while every non-landmark node only
stores distances to a small number of close-by landmarks.
This decreases space consumption, while trying to preserve
accuracy.

To illustrate the idea, we start with a simplified version.
First, we choose a set of landmarks L. For each vertex vi we
store the identifier of the nearest landmark li, and the distance
d(vi, li). In addition, we maintain distances between any two
landmarks in a |L| × |L| matrix. At query time, we upper-
bound d(vi, vj) by d(vi, li) + d(li, lj) + d(lj , vj).

The tightness of the bound depends on the position of
landmarks li and lj ; the closer they are to a shortest path,
the smaller the error. If both landmarks reside on the same
shortest path, then we obtain the exact distance. Of course,
even if li lies on or close to a shortest path to vj , it may be
far away from any shortest path to some other vertex v′j . We
can hence improve this method by choosing more landmarks
for each node. Thus, for each node vi, we pick a small set
vi.L of at most k landmarks from among all landmarks. As
we will show, even k = 5 improves significantly over k = 1.

Our first approach, called Next, selects the k nearest land-
marks for each vertex. To efficiently compute these landmarks,
we initiate a BFS from each landmark, and maintain a priority
queue of the k nearest landmarks at each vertex. While this
solution performs reasonably well, there are situations where
it falls short.

Given a vertex vi, we denote a landmark l as obscured, iff
there exists a shortest path from vi to l containing another
landmark. Consider vi, vj ∈ V (G) and l1, l2, l3 ∈ L. Suppose
we associate l1 and l2 with vi and l2 is obscured by l1. Then
we get d(vi, l2) + d(l2, l3) + d(l3, vj) = d(vi, l1) + d(l1, l2) +
d(l2, l3) + d(l3, vj) ≥ d(vi, l1) + d(l1, l3) + d(l3, vj) for all
vj ∈ V and l3 ∈ vj .L. This implies that storing l2 at vi is
a waste of space. Instead, we should add another landmark
that is further away but not obscured, or store less than k
landmarks at vi, if there are no more unobscured landmarks.
Our second association algorithm, RedBlue, thus assigns the
closest ≤ k unobscured landmarks to each vertex. It can be
implemented by an extended BFS that maintains two queues
(one red for obscured vertices, one blue for unobscured) at no
additional preprocessing cost. A similar algorithm has been
described in [1].

Formally, the overall algorithm now works as follows: First,
we select a set of landmarks L ⊆ V . Then, for every vertex
vi, we select a set vi.L of ≤ k landmarks from L using Next
or RedBlue, and store their distances from vi. We also store
distances between all landmarks in L in a matrix. Given a
query (vi, vj), we obtain ≤ k2 upper bounds d = d(vi, li) +
d(li, lj) + d(lj , vj), one for each (li, lj) ∈ vi.L × vj .L and

select the best one.
The approach analysis is as follows: Landmark selection

time depends of course on the methodology. Simple ap-
proaches, such as Degree, run in O(|V | + |E|) time, while
more complicated approaches take much more time but can
usually be engineered to run fast enough in practice. Distances
between landmarks in G are computed in O(|L| · (|V |+ |E|))
by running BFS from each landmark. Selection of the sets
vi.L for each vi can be done during this computation, with an
additional factor in the worst case of log k if using a minimum
heap at each node, and a constant factor if using linear time
selection instead. (We implemented the heap version as k is
small and the worst case unlikely.) At each node, we store at
most k landmarks and distances, requiring O(|L|2 + |V | · k)
space. For constant k and |L| = O(

√
|V |), this becomes

O(|V |). Query time is O(k2) assuming constant time access
to the distance values.

The three-hop approach can thus asymptotically afford to
keep significantly more landmarks than the two-hop approach,
though we need to see how this affects precision. A fair
comparison of the two requires experimentation that varies
|L|, k, and the algorithms for landmark selection and for
assignment of landmarks to nodes (in the case of three-hop).
Experiments also need to make sure to suitably represent, and
if needed compress, the different structures, instead of just
fixing the total number of distances stored.

V. COMPRESSING LANDMARK DATA STRUCTURES

Although similar, the two-hop and the three-hop approach
store different kinds of data. Hence, a fair practical comparison
of the two methods should assign both methods the same
amount of memory. We now describe lightly compressed data
structures for both methods to address this issue.

A. Two-Hop Methods

For the two-hop approach we need to represent and com-
press a |V | × |L| array of integers. Each query accesses the
two complete rows of the involved vertices. Hence, we can
employ compression techniques that allow us to decompress
complete rows quickly. A naı̈ve approach would employ a 32-
bit integer for each cell. However, even in very large graphs,
distances usually do not exceed a very modest value (due to the
small world phenomenon). Let maxdist denote the maximum
distance value in the matrix. A baseline (BL) approach thus
employs a fixed-size encoding of dlog2 maxdiste bits per entry.

We can do better with two additional observations. First,
even if maxdist is, say, 15, most entries in the matrix are
significantly smaller. Thus, we can use variable-length encod-
ing schemes to save additional space. There are many such
compression schemes [39]; we use Rice coding and choose its
parameter globally for the entire graph. We call this scheme
single row compression (SRC).

Space can be reduced further using neighbor-list compres-
sion (NLC), an idea previously used in the context of web
graph compression [31], [32]. So far, we have compressed
each row of the array individually. In NLC, we represent a



row by storing the difference to a neighboring node. Consider
two neighboring vertices v and w. For any landmark l ∈ L,
the corresponding distances to v and w can differ by at most
one, i.e., d(v, l)− d(w, l) ∈ {−1, 0, 1}. We can thus represent
a row by (i) a pointer to another row, and (ii) a list of L
values ∈ {−1, 0, 1}, indicating the differences to that row.
These values are best represented using a simple Huffman
code, with 0 stored as 0, −1 as 10, and +1 as 11.

Of course, this requires some lists to be stored by them-
selves, without NLC. In general, for each row, we need to (i)
decide whether to express it in absolute terms, or relative to a
neighbor using NLC, and (ii) if so, choose the right neighbor.
We have to ensure that any reference chains remain acyclic
and of reasonable length. This applies equally to two-hop and
three-hop methods, and we describe details below.

B. Three-Hop Methods

We first discuss how to store the symmetric matrix of all
distances between landmarks. We thus maintain only the upper
triangle as an array of

(
L
2

)
entries. This allows accessing any

landmark to landmark distance in constant time.
As in the two-hop case, distances in this matrix are quite

small. We thus resort to a fixed-length encoding of suitable
size and do not further compress this array. There are two
reasons. First, the query algorithm does not access this array in
a row-wise fashion, but almost at random. Second, this array
is usually smaller than the array storing distances between
ordinary nodes and landmarks, but is more frequently accesses;
thus, speed is more important than compressed size.
Distances Between Nodes and Landmarks: For each vertex
v, we need to store distances to at most k landmarks, plus
the information identifying these landmarks. Thus, for each
vertex v, the corresponding landmarks may be different, and
we switch from a matrix representation to lists of (i, d)-pairs
where i ∈ {0 . . . |L|−1} is the ID of a landmark, and d is the
distance from it. These entries could be compressed individu-
ally, or by expressing records of one vertex relatively to those
of a neighbor since neighbors often share many landmarks.
However, this requires somewhat different encoding schemes.

In a first step, we replace the naı̈ve implementation with
a tight encoding of fixed size. Note that the ranges of the
distance values and landmark-IDs are quite different. The
former is rather small (≤ diameter), while the latter is
larger (up to

√
|V |). Thus, in a baseline approach (BL), we

could store landmark IDs in dlog2(|L|)e bits and distances in
dlog2(maxdist)e bits.

In the next step, single row compression (SRC) further
compacts individual entries. As in two-hop above, distance
values are encoded using Rice coding with a globally chosen
parameter. In this case, the benefits of Rice encoding are even
more pronounced as the k landmarks are chosen to be close
by. In contrast, the larger landmark IDs do not benefit as much
from this step. However, if we sort entries by landmark IDs,
then we can encode the gaps between landmark ids using
variable length codes. At query time, we reconstruct landmark
IDs by summing up the gaps.

The list of records for neighboring nodes can differ in two
ways. The nodes could be associated with different landmarks;
however, the algorithms in Section IV emphasize close-by
landmarks and thus neighboring nodes are frequently asso-
ciated with the same landmarks. Second, even if landmarks
are the same, distances could differ by at most 1, as in the
two-hop case. In general, one can expect to identify at least
one neighbor whose information is very similar (almost the
same landmarks and distances).

As in the two-hop case, we can again express records in
terms of the differences to a neighboring node. in this case,
each record can differ from its counterpart at the neighbor in
one of four ways: (i) the distance at vi and vj is equal, (ii) it
deviates by +1, (iii) it deviates by −1, and (iv) the particular
landmark is not associated with the neighbor. We thus store
an array of two-bit entries encoding this information, and for
any entries of type (iv) we store the ID and distance to the
correct landmark.

C. Finding Reference Nodes

For both two-hop and three-hop methods, we need to decide
when to use NLC, and if so, which neighbor to choose as
reference. We have three requirements. Reference chains need
to be acyclic to be decodable. Second, reference chains must
be constrained to a reasonable length for efficient decoding;
for this, we introduce a parameter maxpath. Third, we would
like to get the best compression possible. We devise a simple
heuristic that ensures the first two requirements and greedily
approximates the third one.

The algorithm iterates over all vertices, considering only
neighbors that have already been compressed and decides if
the vertex is encoded absolutely, or relatively to one of these
neighbors. This step employs a gain function described below.
Connecting only to neighbors that have been processed ensures
there are no cycles. To restrict the length of reference chains,
we only connect to neighbors if the resulting chain length cl
is less than maxpath, as suggested in [31], [32].

The gain function expressing the benefit of a relative en-
coding is defined as follows. Let sSRC(vi) denote the number
of bits required for storing the information at some vertex vi
using SRC. Similarly, let sNLC(vi, vj) denote number of bits
for a NLC encoding based on some already processed neighbor
vj . If diff(vi, vj) = sSRC(vi) − sNLC(vi, vj) is larger
than zero, we would benefit from a relative representation,
and should thus encode vi relatively to the neighbor vj that
maximizes this difference. In practice, absolute representation
leaves more options (with regards to maxpath) for nodes
to be processed later, and thus we introduce a threshold
minGain for the benefit, below which we always use ab-
solute encoding. Similarly, assume two vertices vj1, and vj2
such that diff(vi, vj1) = diff(vi, vj2) > minGain, but
vj1.cl > vj2.cl. Again, one could equally well decide to
encode vi relatively to vj1 or vj2, but we should actually favor
vj2 as this leaves more flexibility for processing later nodes.
We generalize this by introducing a penalty factor for the
resulting chain length vi.cl of vi. The resulting gain function



combining benefits and penalty is gain(vi, vj) =
diff(vi,vj)
vj .cl+1 .

While this heuristic could possibly be improved, it proved
sufficient in our experiments.

VI. EXPERIMENTS

We conducted a series of experiments to evaluate the
effectiveness of three-hop landmarks compared to the two-
hop landmarks. We show on three large real world graphs
that for small distances and for a small space budget three-
hop landmarks outperform two-hop landmarks. Moreover, we
show that our proposed compression methods reduce the space
consumption significantly for both landmark types.

A. Experimental Setup

For our experimental evaluation we use three real world
graphs obtained from snap.stanford.edu. All graphs contain a
large connected component consisting of well over 90% of
all vertices. We preprocess all graphs to obtain the largest
connected components. The first graph, Astro-phys, is a col-
laboration network where each node represents a scientist and
there is an edge if two scientists coauthored a paper. It has
17.9K vertices, 197K edges and a diameter of 14. Loc-gowalla
and Orkut, are online social networks. Loc-gowalla consists of
197K vertices, 950K edges and has diameter 16, while Orkut
has 3M vertices, 117M edges and a diameter of 10.

For the evaluation of the distance estimation accuracy we
generated a set of 50K queries for each of the three graphs.
For each query we selected one node vi at random, and a
second node vj of distance d (from the dth shell of a BFS
around vi). Our assumption is that we are constrained to
store only a constant number of bits per vertex to answer
(approximate) distance queries. Therefore the vertex adjacency
lists cannot be stored in memory, and we also need to estimate
distances between neighboring nodes. We focus on distances
d ∈ {1 . . . 7}. Larger distances are not only extremely rare but
are also not as important to estimate as accurately as smaller
distances. To measure the overall quality of each method
we use a single query load of mixed distances for some of
the experiments. In context of social search, distance queries
between close vertices are expected to be much more frequent;
i.e., the people that social network users search for are usually
within their close vicinity. Moreover, the error is much more
important to be smaller for small distance queries than for
larger. We therefore use a power law distribution over the
distances and introduce Qmix based on that distribution.

All algorithms were implemented in Java using fastutil [32]
for compression and specialized data structures for integers.
The source code is available upon request from the authors.

B. Parameter Selection

To make a fair comparison between the 2-hop and 3-hop
approaches we conducted experiments to select the optimal
parameters for each method. For 2-hop we found that selecting
the landmarks with the highest betweenness gives the best
distance estimates on average, reproducing the results in [19].
The same holds for global landmark selection in 3-hop.

For the evaluation of the 3-hop approach we need to choose
the size of the global landmark set L given a fixed space
budget. A larger set L makes the assigned id range of the
global landmarks larger and therefore the landmark id lists
of each vertex harder to compress. Therefore the estimation
quality reaches a peak as |L| grows and starts decaying for
a given space budget. We experimented with a wide range
of values up to

√
|V | for each graph. We found that the

best values for |L| are 120, 300, and 500 for Astro-phys,
Loc-gowalla, and Orkut respectively, independent of the space
budget or number of local landmarks per vertex.

For both 2 and 3-hop landmark methods NLC is most com-
monly the optimal compression method. Because it reduces
the space consumption more than BL and SRC, NLC gives
lower estimate errors for the same space consumption. Also,
for 3-hop RedBlue provides tighter distance bounds than Next
for the same space budget. The above two parameters are
discussed in detail in the following subsections.

C. Two-Hop vs Three-Hop

We compare both methods using the parameters from Sec-
tion VI-B to show that given a restricted space budget, 3-
hop outperforms 2-hop for all graphs. Figure 1 presents the
comparison between the two methods for all three graphs for
the query load Qmix for different individual distances.

We observe that on average, 3-hop outperforms 2-hop in
all three graphs. We also observe that the average error is
always larger both for smaller distances and for smaller space
budgets. However, the behavior of the two methods is not the
same for all three graphs. For Astro-phys the benefit of using
3-hop is significantly larger than in the case of Loc-gowalla
and Orkut. In fact, for Orkut 2-hop slightly outperforms 3-hop
initially. The error lines of the two methods intersect close to
15 bits per vertex and then 3-hop gives slightly better distance
estimates for the same space budget. For distances 1 to 3 on
Astro-phys and Loc-gowalla the 3-hop error is smaller than
the 2-hop error for any space consumption but the smaller the
space consumption the greater the benefit of using our 3-hop
method. For larger distance there is no benefit in using 3-hop.
For Orkut the benefit of 3-hop is only for distances 1 and 2,
and we observe a significant disadvantage in using 3-hop for
distances larger than 4.

We can draw two basic conclusions from these plots. First,
the smaller the distance we aim to estimate, the better 3-
hop method works than 2-hop. Due to the higher number
of landmarks for 3-hop, vertices are more likely to have a
close-by landmark. Due to RedBlue, local landmarks for short
distance queries tend to overlap and hence be more exact. In
comparison, the smaller number of landmarks in 2-hop results
in higher average errors for such queries, Second, 3-hop leads
to a greater benefit when only limited space is available. This
is particularity beneficial for very large graphs since even a
small amount of bits per vertex introduces a very significant
space consumption.

Regarding query processing, we do not observe a significant
difference in speed. This is because the 2-hop methods have



Fig. 1. Average absolute error of 2-Hop and 3-Hop (y-axis). Top: For queries Qmix when increasing the space availability (x-axis); i.e. the number of bits
that the methods store for each vertex. Bottom: For different distance queries (x-axis) and three fixed space budgets per vertex. For Astro-phys, Loc-gowalla,
and Orkut (left to right).

linear query time in the number of global landmarks |L| used,
whereas 3-hop has quadratic query time in the number of local
landmarks k which can be chosen much smaller.

D. Next vs RedBlue

Figure 2 compares the two local landmark selection methods
proposed for 3-hop with respect to their average estimation
error and their space consumption for different numbers of
k. We experiment with k = {5, 10, 15, 20}. As can be seen,
RedBlue always produces slightly smaller average errors.
Most of the time, it decreases the required space per vertex
dramatically. In rare cases (k = 10 in Orkut, and k = 15
in Astro-phys), however, the space required for RedBlue is
higher than that of Next: RedBlue may choose different or
fewer landmarks per vertex and may yield a smaller number
of local landmarks and a smaller error for a fixed graph, k
and L. However, it might happen that the resulting landmark id
lists cannot be compressed as well, due to larger gaps. Finally,
we note that the benefit of using RedBlue is larger for larger
values of k. This behavior is consistent in all graphs for all k.

E. Compression Schemes

We applied the compression schemes from Section V on
all three graphs for both 2-hop and 3-hop methods to com-
pare their performance. The top plots of Figure 3 show the
compression schemes for the 2-hop method. The three graphs
behave very similar for all sizes of landmark sets that are used
in the experiment. BL as expected consumes the most space
for the same number of landmarks and NLC the least. SRC
has a behavior rather similar to NLC. The bottom plots show
the corresponding space consumption in the 3 compression
schemes for the 3-hop method, where we fixed the total
number of landmarks to be 120, 300, and 500, respectively.
We observe a much greater benefit of the two compression
schemes in the 3-hop case: The plots show that NLC is almost

twice as good as BL, whereas SRC lies somewhere in between
the numbers for 2-hop, and is almost as good for 3-hop.

VII. CONCLUSIONS

In this work, we studied the problem of efficient and
accurate pairwise distance estimation in social graphs. We
proposed a three-hop approach with a landmark selection
framework that first selects a set of global landmarks and then
assigns a small subset of them to each vertex. Moreover, we
describe new compression schemes that apply both to previous
two-hop methods and our new three-hop method.

We draw two main conclusions from our experimental
evaluation on several real world graphs. First, our three-hop
approach outperforms existing two-hop methods for queries of
small distances, but does not improve accuracy in some other
cases. Second, applying suitable compression schemes on
distance tables can significantly decrease space requirements
for two-hop as well as three-hop approaches, and is in fact
essential when comparing the practical applicability of the
different approaches in a fair way. Acknowledgement This
research was supported by NSF Grant IIS-1117829 “Efficient
Query Processing in Large Search Engines”.
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